APPLIED PHYSICS

Subject Code: AP102BS

Regulations: R18 - JNTUH

Class : I Year B.Tech II Semester

Department of Science and Humanities

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

APPLIED PHYSICS(AP102BS)

I. COURSE OVERVIEW:

The Course begins with introduction to quantum physics with emphasis on black body radiation, and dual nature of radiation along with wave – particle duality that lead to the development of quantum mechanics. The significance of wave function, the Schrodinger independent wave equation and its application is also part of this unit

Semiconductor physics and semiconductor devices are dealt in unit II. Types of semiconductors and carrier concentration in them are part of this unit. The Hall effect, the formation of PN junction diode and V-I characteristics PN diode and Zener diode are emphasized more. The Bipolar junction transistor and its operation is also discussed in this unit.

Unit III deals with the Opto – electronics that contains the radiative recombination mechanism in semiconductors. The materials used in the development of LED and semiconductor lasers and their structures are detailed in this unit. The study of semiconductor materials such as photo detectors, solar cell Pin and avalanche diode are also part of this unit.

The Lasers and Fiber optics is unit IV. It covers the properties, principle and mechanism to produce a LASER and types & applications of Lasers. The introduction to fiber optics, the principle and working of optical fibers and their types and the losses associated with them are also dealt in this unit.

The fundamentals of Electrostatics along with Maxwell's equations with dielectric and magnetic properties of materials are dealt in unit V.

II. PREREQUISITE(S):

Before attending a session in engineering physics, the student is expected to know all the fundamental laws in physics. They are also supposed to have thorough back ground of the concept that is to be dealt in the class which they are already familiar with in their earlier classes.

III. COURSE OBJECTIVES:

- Students will demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Students will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductor physics and Electromagnetic theory and a broad base of knowledge in physics.
- The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- To study applications in engineering like memory devices, transformer core and electromagnetic machinery.

IV. COURSE OUTCOMES:

Outcome	Knowledge
	Level
	(Blooms Level)
The student would be able to learn the fundamental concepts on Quantum	Remember
behavior of matter in its micro state.	
The knowledge of fundamentals of Semiconductor physics, Optoelectronics,	Understand,
Lasers and fibre optics enable the students to apply to various systems like	Apply
communications, solar cell, photo cells and so on.	
Design, characterization and study of properties of material help the students	Create
to prepare new materials for various engineering applications.	
The course also helps the students to be exposed to the phenomena of	Analyze
electromagnetism and also to have exposure on magnetic materials and	
dielectric materials.	

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Problem based Assignments/
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Assignments/ Exam/ Case Studies
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2.5	Assignments/ Case Studies
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments/ Case Studies
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Problem based Assignments/ Exam
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	-	-
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	-
PO8	Ethics : Apply ethical principles and commit to	-	

			1
	professional ethics and responsibilities and norms of the		
	engineering practice.		
PO9	Individual and team work: Function effectively as an		
	individual, and as a member or leader in diverse teams,	2	Assignments
	and in multidisciplinary settings.		
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Assignments/ Exams/ Seminars
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	-
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.	2	Projects/ Case Studies

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

			Program Outcomes (PO's)									
CO's	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3		2		-	-	-		ı	1	2
CO2	3	3	2		2	-	-	-	2	ı	1	
CO3	3		3	2	2	-	-	-	2	ı	1	2
CO4	3	3		2		-	-	-		ı	1	2
Average (Rounded)	3	3	2.5	2	2	-	-	-	2	ı	1	2

VII. SYLLABUS:

UNIT-I: Quantum Mechanics

Introduction to quantum physics, Black body radiation, Planck's law, Photoelectric effect, Compton effect, de-Broglie's hypothesis, Wave-particle duality, Davisson and Germer experiment, Heisenberg's Uncertainty principle, Born's interpretation of the wave function, Schrodinger's time independent wave equation, Particle in one dimensional box.

UNIT-II: Semiconductor Physics

Intrinsic and Extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, Hall effect, p-n junction diode, Zener diode and their V-I Characteristics, Bipolar Junction Transistor (BJT): Construction, Principle of operation.

UNIT-III: Optoelectronics

Radiative and non-radiative recombination mechanisms in semiconductors, LED and semiconductor lasers: Device structure, Materials, Characteristics and figures of merit, Semiconductor photodetectors: Solar cell, PIN and Avalanche and their structure, Materials, working principle and Characteristics.

UNIT-IV: Lasers and Fibre Optics

Lasers: Introduction to interaction of radiation with matter, Coherence, Principle and working of Laser, Population inversion, Pumping, Types of Lasers: Ruby laser, Carbon dioxide (CO2)

laser, He-Ne laser, Applications of laser. Fibre Optics: Introduction, Optical fibre as a dielectric wave guide, Total internal reflection, Acceptance angle, Acceptance cone and Numerical aperture, Step and Graded index fibres, Losses associated with optical fibres, Applications of optical fibres.

UNIT-V: Electromagnetism and Magnetic Properties of Materials

Laws of electrostatics, Electric current and the continuity equation, Ampere's and Faraday's laws, Maxwell's equations, Polarisation, Permittivity and Dielectric constant, Internal fields in a solid, Clausius-Mossotti equation, Ferroelectrics and Piezoelectrics. Magnetisation, permeability and susceptibility, Classification of magnetic materials, Ferromagnetism and ferromagnetic domains, Hysteresis, Applications of magnetic materials

.

SUGGESTED BOOKS:

TEXT BOOKS:

- 1. Engineering Physics, B.K. Pandey, S. Chaturvedi CengageLearing.
- 2. Halliday and Resnick, Physics Wiley.
- 3. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar S. Chand **REFERENCE BOOKS**:
- 1. Richard Robinett, Quantum Mechanics
- 2. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill inc. (1995).
- 3. Online Course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Guptha on NPTEL

4.

GATE SYLLABUS: NA

IES SYLLABUS: NA

VIII. COURSE PLAN(Week-wise):

The course will proceed as follows for all sections. Please note that the week and the classes in each week are relative to each section.

Lecture	Week	Торіс	Course Learning outcomes	Text Books
Unit – I:	Principles	of Quantum Mechanics		
1		Introduction to Quantum Mechanics	Remember the basics of quantum mechanics	
2		Black body radiation, Planck's radiation law	Define black body radiation	
3	1	Expression for energy density	Derive the expression for energy density of Planck's resonators	
4		Photo electric effect - Derivation	Derive photo electric equation	
5		Compton effect and experiment	Define Compton wavelength,	
6	2	Expression for Compton wavelength	Derive expression for Compton shift	
7	<u> </u>	De – Broglie hypothesis, Wave particle duality	Explain wave matter duality	Book 1,2,3
8		Davisson and Germer experiment	Evaluate the wave particle duality	
9		Heisenberg uncertainty principle and illustrations	Understand Heisen berg Principle with examples	
10		Physical significance of wave function – Born's interpretation	Learn the importance of the wave function	
11	3	Schrodinger time independent wave equation	DeriveSchrodinger time independent wave equation	
12			ApplySchrodinger time independent wave equation for the energies	
		Particle in 1-D potential box	of a particle in a 1D box	
TT 1/ TT	<u> </u>	Mock - Test – I		
Unit – II	: Semicon	ductor Physics	Analyza the towns C	
13		Intrinsic and extrinsic semiconductors	Analyze the types of semiconductors	
14		Intrinsic carrier concentration – Fermi level	Derive the expression for Intrinsic carrier concentration, Deduct	
15	4	Extrinsic carrier concentration – Fermi level	Derive the expression for Extrinsic carrier concentration,	
16		Carrier generation and recombination	Remember the basics of recombination	
		Bridge Class I		
17	5	Carrier transport phenomena: Drift and diffusion	Remember the basics of transport phenomena,	

-	T		T	
			Derive continuity equation	
18		Hall effect – Definition and experiment	Remember Hall effect,	
19		Expression for Hall coefficient	Derive Hall coefficient	
20			Understand the Theory of	
20		Formation of PN junction,	formation of PN junction	
		Bridge Class II		
			Apply the theory of PN	
21			junction to study the VI	
		PN diode and its V - I characteristics	characteristics	
			Apply the theory of PN	
22			junction to study the VI	
22			characteristics of Zener	
	6	Zener diode and its V - I characteristics	diode	
			Explain the construction	
23		Construction of bipolar junction transistor	of a BJT	
	-		Understand the working	
24		Operation of BJT	of BJT	
		Bridge Class III	01 153 1	
IINIT I	II · Ontoo	electronics		
01111 - 1	II . Optoe	Radiative and non – radiative recombination in	Discuss the Theory of	
25		semiconductors	radiative recombination	
		semiconductors	Evaluate the differences	
26				
	7	Direct and indirect hand can comic and votors	indirect band gap semiconductors	
	- /	Direct and indirect band gap semiconductors		
27		LED device etweetens	Analyse the structure of LED	
		LED – device structure		
28		and and dust on I access at masterns	Analysethe structure of	
		semiconductor Lasers - structure	LASER	
		Bridge Class IV	A 1	
29		Characteristics and figure of merit for LED	Analyze the	
		materials	characteristics of LED	
			Analyze the	
30		Characteristics and figure of merit for laser	characteristics of LASER	
	1	materials	materials	
	8		Remember the principle	
31			of Solar Cell and	
			Analysecharacteristics	
		Solar cell principle, working and characteristics	Solar cell	
32			Analyse characteristics	
52		Solar cell materials and their structure	Solar cell materials	
		Bridge Class V		
	amination			
UNIT – I	II : Optoe	electronics Contd.		
33	9		Remember the principle	
	<u> </u>	PIN diode principle, working and characteristics	of PIN diode,	
				•

			Analyse characteristics	
34		PIN diode materials and their structure	PIN diode materials	
		Thy diode materials and their structure	Remember the principle	
			of Avalanche	
			diode, Analyse	
35			characteristics Avalanche	
		Avalancha diada principla working and	diode	
		Avalanche diode principle, working and characteristics	materialscharateristics	
		Characteristics		
26			AnalyzeAvalanche diode	
36			materials and their	
		Avalanche diode materials and their structure	structure	
		Bridge Class VI		
UNIT – I	V : Lasers	and Fiber Optics		
37		Interaction of radiation with matter – Einstein	Understand the interaction	
37		coefficients	of matter with radiation	
38		Characteristics of Lasers, Principle, working and	Evaluate the charateristics	
36		Laser schemes	of LASER	
39	10		Remember the phenomena	
39		Pumping, population inversion	of LASER production	
40			Analyse the working of a	
40		Ruby Laser	RUBY laser	
		Bridge Class VII		
4.1			Analyse the working of a	
41		CO ₂ Laser	CO ₂ laser	
42			Analyse the working of a	
42		He – Ne Laser, Applications of Lasers	He - Ne laser	
	11		Remember the	
43			fundamentals of optical	
		Introduction to fiber optics	fibers	
		Mock - Test – II		
		Bridge Class VIII		
			Analyze the usage of	
44			optical fiber as a wave	
		Optical fiber definition and usage as a wave guide	guide	
		, and the second	Remember principle of	
45		Principle of Optical Fiber – Total internal reflection	optcal fibre	
	12	The second secon	Derive the expression for	
46		Acceptance angle, acceptance cone, Numerical	acceptance angle,	
		aperture	Numerical aperture	
	1	Types of optical fibers based on mode and RI	Evaluate the different	
47		profile	types of optical fibers	
	1	Bridge Class IX	types of optical fibers	
IINIT _ X	/ · Electro	magnetism and Magnetic Properties of Materials		
		magnetism and magnetic ripperties of materials	Analyze the	
48	13	Step index fiber - characteristics	characteristics of SI fiber	
49	1.5	Transmission of signal through SI fiber,	Evaluate the usage of GI	
'1 2		Transmission of signal unough of floci,	Lvaluate the usage of OI	

	1	Transmission of signal through GI fiber	fiber for communication
	1	Transmission of signal unough of fiber	Analyze the
50		Graded index fiber - characteristics	characteristics of GI fiber
		Losses in Optical fibers, Applications of optical	Understand the various
51		fibers	
			types of losses
		Bridge Class X	Remember the laws of
52		Laws of electrostatics	electroststics
		Laws of electrostatics	Remember electric current
53			
33		Electric symmetry and advertism of continuity	Derive the continuity
	1 1	Electric current and equation of continuity	equation
E 1	14	A	Understand Ampere's law
54		Ampere's law and Faraday's laws of	j j
	4	electromagnetism	of electromagnetism Derive Maxwell's
55		Maywall aquations	
	1	Maxwell equations	equations
		Bridge Class XI	Domomhor the consent of
56		Concept of dialogtric polarisation	Remember the concept of
	4	Concept of dielectric polarisation	polarisation Remember the basics of
57		Fundamental definitions in dialectrics	
	-	Fundamental definitions in dielectrics	dieelctrics Remember internal fields
	15		
58	15	Internal fields in solids Clausius Massatti	in solids and DeriveClausius – Mossotti
		Internal fields in solids, Clausius – Mossotti relation	
	-	Telation	relation Analyza various types of
59		Piezo pure and formalisatricity	Analyze various types of
	4	Pridge Class VII	polarization phenomena
		Bridge Class XII	Remember basics of
60		Fundamental definitions in magnetism	
	4	Fundamental definitions in magnetism	magnetism Analyze the different
61		Classification of magnetic metarials based or	,
61		Classification of magnetic materials based on	types of magnetic
	16	magnetic moment	materials Understand the Theory of
62	16	Forms magnetism theory, magnetic domains	Understand the Theory of
	4	Ferro magnetism theory, magnetic domains	ferro magnetism, Analyze
62			Apply the theory of
63		Hyptomosis and application of magnetic materials	ferromagnetism to
	1	Hysteresis and application of magnetic materials	understand Hysteresis.
]], AT + 3 T	Bridge Class XIII	
	MIA I	I Examinations	

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

X. QUESTION BANK: (JNTUH)

Definitions of the different levels of cognitive skills in Bloom's taxonomy marked in descriptive questions (where the highest level in question bits is only marked) are as follows:

BLOOMS COGNITIVE LEVEL SKILL		DEFINITION
Level–1 (L1) :REMEMBER	Knowledge	Recalling/Retrieving relevant terminology, specific facts, or different procedures related to information and/or course topics. (At this level, student remembers something, but may not really understand it fully.)
Level–2 (L2):UNDERSTAND	Comprehension	Determining the meaning of instructional messages (facts, definitions, concepts, graphics etc.)
Level–3 (L3) : APPLY	Application	Carrying out or use previously learned information in another familiar situations or in problem solving
Level–4 (L4) :ANALYZE	Analysis	Breaking information into its constituent parts and detecting how the parts relate to one another and to an overall structure or purpose. Analysis refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments
Level–5 (L5) :EVALUATE	Evaluation	Making judgment's based on criteria and standards, personal values or opinions
Level–6 (L6) : CREATE	Synthesis	Create or uniquely apply prior knowledge and/or skills to form a novel, coherent whole or original product or produce new and original thoughts, ideas, processes,

DESCRIPTIVE QUESTIONS: (WITH BLOOMS PHRASES)

UNIT I Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	Define black body radiation	Remember	1
2	State the Planck's law	Remember	1
3	What is photo-electric effect?	Remember	1
4	What is Compton effect?	Remember	1
5	State de – Broglie's hypothesis	Remember	1
6	Write a short note on wave – particle duality	Remember	1
7	Explain Heisenberg uncertainty principle.	Understanding	4
8	Define the wave function	Remember	1
9	Mention the physical significance of a wave function.	Apply	2
10	Write down the Schrodinger's time independent wave	Remember	1
	equation.		

Long Answer Questions-

S.No	Question	Blooms	Course
5.110	Question		
		Taxonomy Level	Outcome
1	Deduce the expression of Planck's quantum theory of	Evaluate	4
	radiation.		
2	Discuss the photoelectric effect and explain how a change	Create	3
	in frequency and intensity affects the kinetic energy of		
	electrons on the basis of Einstein's theory.		
3	What is Compton effect? Prove that the Compton shift is	Remember	1
	given by $\Delta \lambda = \frac{h}{1 - \cos \theta}$		
	$m_0 c$		
4	Explain de Broglie's concept of matter waves.	Evaluate	3
5	Describe the Davisson and Germer experiment for the	Analyse	4
	existence of matter waves.		
6	What is Heisenberg uncertainty principle? Explain how it	Remember	4
	is the outcome of the wave description of a particle.		
7	Derive the Schrödinger time independent wave equation	Understanding	4
	for matter waves.		
8	Explain the Bohr's interpretation of the wave function.	Understanding	4
9	Show that the energies of a particle in a potential box are	Apply	2
	quantized.		
10	What is the significance of matter waves? Explain.	Remember	4

UNIT II Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	List out the properties of semiconductor.	Analyze	4
2	What is meant by doping? Explain the types of doping.	Remember	1
3	Distinguish between intrinsic and extrinsic semiconductor.	Analyze	4
4	Define Fermi level.	Remember	1
5	Name the majority and minority charge carriers in n-type	Analyze	4
	and p-type semiconductor?		
6	Define recombination.	Remember	1
7	State Hall effect.	Remember	1
8	Draw the energy band diagram for the p-n junction diode	Create	3
	in equilibrium position.		
9	What is meant by diffusion and drift in carrier transport?	Remember	1
10	What is depletion region in p-n junction?	Remember	1
11	What happens to the width of the depletion layer of a p-n	Understanding	4
	junction when it is (i) forward biased? (ii) reverse biased?		
12	Draw the V -I characteristics of a zener diode.	Create	3
13	Why an ordinary transistor is called bipolar?	Remember	1

Long Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	Obtain the expression for Fermi energy for intrinsic	Evaluate	4
	semiconductor.		
2	Draw a neat energy band diagram of intrinsic	Create	3
	semiconductor. Label the various energy level. Prove that		
	the Fermi level lies at the middle of the band gap.		
3	How does the Fermi level change with increasing	Apply	2
	temperature in intrinsic and extrinsic semiconductor?		
	Sketch diagram.		
4	Explain the formation of depletion region in p-n junction.	Evaluate	4
5	Draw neat energy band diagrams for unbiased, forward	Create	3
	biased and reverse biased pn junction.		
6	Explain the various processes of carrier generation and	Remember 1	
	recombination.		
7	What is Hall effect and give its importance in the field of	Understanding 4	
	semiconductors.		
8	Obtain the expression of hall coefficient for n-type	Evaluate	4
	semiconductor.		
9	Explain the working of zener diode with their V-I	Remember	1,4
	characteristics.		
10	Explain the construction and working of BJT.	Evaluate	1

UNIT III

Short Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	Explain radiative recombination.	Remember	1
2	What is the principle of working of an LED	Remember	1
3	What are photo-detectors? Give examples.	Remember	1
4	What are direct and indirect band gap semiconductors?	Remember	1
5	Write down the differences between Avalanche and PIN	Analyze	4
	diodes		

Long Answer Questions-

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	Explain the construction and working of a solar cell.	Evaluate	4
2	Explain the working of a PIN diode by drawing the VI	Evaluate	4
	characteristics.		
3	What is an avalanche diode. Explain its working by	Remember,	1,4
	plotting the VI characteristics graph.	Evaluate	

UNIT IV Short Answer Questions

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	What are stimulated and spontaneous emissions?	Remember	1
2	Explain the characteristics of LASER light.	Understanding	4
3	What is population inversion?	Remember	1
4	Mention the methods of pumping.	Remember	1
5	Mention a few applications of Lasers.	Remember	1
6	Describe an Optical fiber.	Create	3
7	Define Total internal reflection.	Remember	1
8	What is acceptance angle?	Remember	1
9	Define Numerical aperture.	Remember	1
10	Define attenuation in optical fibers.	Remember	1

Long Answer Questions

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	Derive the Einstein coefficients.	Evaluate	4
2	What is population inversion? Explain how it is achieved	Remember	1
	in a He – Ne LASER		
3	Explain the construction and working of a Ruby LASER.	Evaluate	4
4	Explain the working of Carbon dioxide LASER.	Evaluate	4
5	What are the applications of LASERS in engineering and	Remember	1,2
	technology?		
6	What is FIBRE? Explain principle in optical fibre and	Remember,	1,3
	their applications.	Evaluate	
7	Explain construction of a fibre.	Understanding	4
8	Give an expression for Acceptance angle, cone and	Evaluate	3
	Numerical aperture.		
9	Explain the various types of fibers and optical fibers in	Remember	1
	Communication systems.		
10	Explain the optical fiber communication system.	Evaluate	3
11	Mention the applications of optical fibers in medicine.	Remember	4
12	What are the various types of losses in optical fibers?	Remember	1,4
	Explain Bending losses.		

UNIT V Short Answer Questions

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	State and explain coulombs inverse square law.	Remember	1
2	State Gauss's law in electrostatics.	Remember	1
3	What is electric current?	Remember	1
4	State ampere's circuital law.	Remember	1
5	Explain Faraday's law of electromagnetic induction.	Evaluate	1
6	What is dielectric polarization?	Remember	1,4

7	Define dielectric constant.	Remember	1
8	What are internal fields?	Remember	1
9	Write notes on Piezoand Ferroelectricity with suitable	Remember	1
	examples.		
10	Define magnetization.	Remember	1
11	What is magnetic hysteresis?	Remember	1

Long Answer Questions

S.No	Question	Blooms	Course
		Taxonomy Level	Outcome
1	State and explain continuity equation	Remember,	1,4
		Evaluate	
2	Derive Maxwell's equations	Evaluate	1
3	Explain the concept of internal field in solids. Derive an	Evaluate	1
	expression for it & hence obtain Clausius – Mossotti		
	relation.		
4	Define the terms a)Permeability b) Magnetisation	Remember	1
	c)Magnetic susceptibility d) Magnetic induction e)		
	Relative permeability		
5	What is Bohr Magneton. Explain the origin of Magnetic	Remember	1
	moment.		
6	How materials are classified as dia ,para& ferromagnetic	Understanding	4
	give a comparison of their of their properties.		
7	Explain the factors leading to the origin of magnetic	Evaluate	4
	moments. What is Bohr magneton?		
8	Explain the domain theory of ferromagnetism & explain	Evaluate	4
	hysteresis?		

XI. OBJECTIVE QUESTIONS: JNTUH

UNIT	I
1.	The value of Planck's constant is
2.	The quantum of electromagnetic energy is called
3.	The emission of electrons when a light of suitable wavelength falls on a metal plate is
	called
4.	The expression of Compton shift is given by
5.	The de – Broglie's matter waves are also called waves
6.	Velocity of matter waves is always than em radiation.
7.	Wave nature and particle nature called dual nature is exhibited by
8.	The Davisson – Germer experiment proves that electrons behave as
9.	According to Heisenberg's uncertainty principle, the relation between energy and time is
	given by
10.	The wave function is defined as
11.	The eigen energies for a particle in a box are given by $E_n = \underline{\hspace{1cm}}$.

UNIT II					
1. When the band gap is in the order of 1eV in a solid it behaves as					
Fermi level is the energy of the electron at					
3. The semiconductor in its pure form is called					
The process of adding impurity in semiconductor is called					
The direct band gap semiconductors has a large probability of					
 6. An example of indirect band gap semiconductor is 7. The P – Type semiconductor is formed by doping a impurity. 					
7. The P – Type semiconductor is formed by doping a impurity.					
8. Addition of pentavalent impurity results in semiconductor.9. PN junction is formed by					
10. For an N – type semiconductor, the Fermi level lies					
10. For all IV type semiconductor, the Fermi level lies					
UNIT III					
1. The wavelength emitted by a semiconductor Laser is					
2. The LED works on the principle of					
3. The energy gap of an indirect band gap semiconductors lies between	<u> </u>				
4. An example of indirect band gap semiconductor is					
5. GaAs is example of semiconductor.6. Fermi level is defined as					
7. The Hall coefficient of an N type semiconductor is					
8. The Hall coefficient is defined as					
9. The avalanche breakdown takes place at					
10. Zener diode is always operated in					
UNIT IV					
1. Working of an optical fiber is based on					
a. Total internal reflection					
b. Refraction					
c. Scattering					
d. None					
2. The refractive index of the core is always greater than that of the cladding.					
a) True b) False c) Can't say d) Some times					
3. The difference in the refractive indices of core and cladding must be					
a. More					
b. Small					
c. uniform					
d. None					
4. The refractive index profile for the step index fiber is					
a. step wise increase					
b. radially increasing					
c. constant value					
d. none					
5. For graded index fiber the refractive index profile is					
a. simple harmonic					
a. Simple harmonic					

	b. Step	wise increase			
	c. Rad	ially increases			
	d. Non	e			
6.	In a graded	index fiber, the	e refractive ind	dex gradually dec	creases from core to cladding.
	a) True	b) False	c) Can't sa	y d) None	
7.	In a step inc	lex fiber, the d	ifference in the	e refractive indic	es of core and cladding is
	a) Small	b) Large	c) Zero	d) Unity	
8.	The refracti	ve index differ	rence in a step	index fiber multi	i mode fiber is
	a) Small	b) Large	c) Zero	d) None	
9.	The inter-m	odal dispersion	n in an SI fiber	r is	
	a) Small	b) Large	c) Zero	d) None	
10.	For small di	istance commu	nication such	as LAN	fibers are used.
	a. Sing	gle mode Step i	index		
	b. Mul	ti mode Step ii	ndex		
	c. Grad	ded index			
	d. Non	e			
11.	For a grade	d index fiber th	-		
	a) Small	, ,	c) Zero	ŕ	
12.		_		easier than in the	SI fiber.
	a) True	<i>'</i>	c) Can't sa	• .	
	_	-		to	·
				·	
15.		-	of a signal to n	naximum is calle	d
	a. atter				
	-	lification			
		emental amplit	ude		
	d. Non				1.01
16.		ignal transmiss	ion, the attenu	ation of the option	cal fiber must be
	a. less				
	b. mor		1:0		
	=	al to average an	nplification		
17	d. Non		• .1		
1/.	-		e in the	region of I	EM spectrum. (IR region)
	a. Visi	bie			
	b. UV				
	c. IR	movivovo			
	d. Mic	iowave			

UNIT V	
1. Electronic polarization with increase in temperature.	
2. Dielectrics are	
3. The ratio of permittivity of medium to that of air is called	
4. Two equal and opposite charges separated by a small distance	e constitutes a
5. The ionic polarizability is than electronic polarizability.	
6. The orientational polarizability is strongly dependent on	
7. The relationship between the dielectric constant and electronic polarizab	oility is given by
8. The temperature at which the transition of antiferro to paramagnetism take	es place is called
9. Magnetic ceramics are materials.	
10. Every ferro magnetic materials contains regions of dipole moments called	·
11. The value of Bohr magneton is	
12. The susceptibility of dia-magnetic materials is	
13. The relative permeability of ferro magnetic materials is	
14. The hysteresis is exhibited by materials.	
XII. GATE QUESTIONS: NA	
XIII. WEBSITES:	
1. www.motionmountain.com	

- 2. www.einsteinhome.com
- 3. http://nptel.ac.in/

XIV. EXPERT DETAILS:

- 1. Prof. RavindranEthiraj, Retd Professor, Department of Physics, OU
- 2. Prof. P. Kishtaiah, Department of Physics, OU
- Prof. D Linga Reddy, Department of Physics, OU
 Prof. K. NarayanaRao, School of Physics, HCU

5.

XV. JOURNALS:

INTERNATIONAL

1. Journal of Physics (American Institute of Physics)

NATIONAL

2. Indian Journal for Pure and Applied Physics.

XVI. LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Deductions from Planck's radiation law
- 2. Semiconducting materials
- 3. Semiconducting materials and their structures
- 4. Construction and working of an optical fiber
- 5. Magnetic Hysteresis

XVII. CASE STUDIES / SMALL PROJECTS:

- 1. Water level indicator.
- 2. Burgler alarm using photo detectors..
- 3. Study of the Characteristics of a Thermistor.
- 4. Constructing a circuit for LEDs of different colors to study IV characteristics.
- 5. Developing a prototype of a magnetically levitating train.
- 6. Switching devices using remote sensor using internet.
- 7. Using Solar cell for domestic applications.