CONTROL SYSTEMS

Subject Code : EE404PC

Regulations : R18 - JNTUH

Class : II Year B.Tech EEE II Semester

Department of Electrical and Electronics and Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

CONTROL SYSTEMS (EE404PC) COURSE PLANNER

I. COURSE OVERVIEW:

In this course it is aimed to introduce to the students the principles and applications of control systems in everyday life. The basic concept of block diagram reduction, time domain analysis solutions to time invariant systems and also deals with the different aspects of stability analysis of systems in time domain and frequency domain.

II. PREREQUISITES:

Linear Algebra and Calculus, Ordinary Differential Equations and Multivariable Calculus Laplace Transforms, Numerical Methods and Complex variables.

III. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

S.No	Description
1	To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response.
2	To assess the system performance using time domain analysis and methods for improving it.
3	To assess the system performance using frequency domain analysis and techniques for improving the performance.
4	To design various controllers and compensators to improve system performance.

IV .COURSE OUTCOMES:

S.No	Description	Bloom's Taxonomy Level
CO1	Understand the modeling of linear-time-invariant systems using transfer function and state space forms.	Knowledge, Understand (Level 1, Level 2)
CO2	Understand various feedback control strategies.	Knowledge, Understand (Level 1, Level 2)
CO3	Analyze the system response and stability in both time-domain and frequency domain.	Knowledge, Analyze (Level 1, Level 4)
CO4	Apply and Design different types of compensators using in time-domain and frequency domain specifications.	Apply, Evaluate (Level 3, Level 5)
CO5	Analyze the system response and stability of systems represented in state space form	Analyze (Level 4)
CO6	Model and Analyze the linear discretized time systems.	Create, Analyze (Level 5, Level 4)

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (PO)	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems related to Computer Science and Engineering.	2	Lectures, Assignments university exams.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems related to Computer Science and Engineering and reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Slip tests, Surprise tests and Mock tests
PO3	Design/development of solutions: Design solutions for complex engineering problems related to Computer Science and Engineering anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Hands on Practice sessions
PO4	Conduct investigations of complex problems : Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab Sessions and model developments
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Practices new methods
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Computer Science and Engineering professional engineering practice.	-	-
PO7	Environment and sustainability : Understand the impact of the Computer Science and Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	-
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	-
PO9	Individual and team work : Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.	-	-
PO10	Communication : Communicate effectively on complex engineering activities with the engineeringcommunity and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	-	-
PO11	Project management and finance : Demonstrate knowledge and understanding of theengineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2	Workshops /Develop new projects

	Program Outcomes (PO)	Level	Proficiency assessed by
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change.		Projects and seminars

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

-: None

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSO)	Level	Proficiency assessed by
PSO1	Talented to analyze, design, and implement electrical & electronics systems and deal with the rapid pace of industrial innovations and developments	2	Participate events, seminars and symposiums Experiments / Tools /Projects
PSO2	Skillful to use application and control techniques for research and advanced studies in Electrical & Electronics Engineering domain.	2	Participate events, seminars and symposiums Experiments / Tools /Projects

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

-: None

VII. COURSE CONTENT: SYLLABUS

JNTUH SYLLABUS

UNIT - I

Introduction to Control Problem: Industrial Control examples. Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback. Blockdiagram algebra.

UNIT - II

Time Response Analysis of Standard Test Signals: Time response of first and second ordersystems for standard test inputs. Application of initial and final value theorem. Design specificationsfor second-order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria.Relative Stability analysis. Root-Locus technique. Construction of Root-loci.

UNIT - III

Frequency-Response Analysis: Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phasemargin. Closed-loop frequency response.

UNIT - IV

Introduction to Controller Design: Stability, steady-state accuracy, transient accuracy, disturbancerejection, insensitivity and robustness of control systems. Root-loci method of feedback controllerdesign. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation indesigns. Analog and Digital implementation of controllers.

UNIT - V

State Variable Analysis and Concepts of State Variables: State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. Concept of controllability and observability. Poleplacement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems.

TEXT BOOKS:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

REFERENCE BOOKS:

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 2. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.

GATE

Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stabilityanalysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.

IES SYLLABUS

Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins: Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems, Compensators; Industrial controllers.

VIII. LESSON PLAN COURSE SCHEDULE:

			BHARAT IN	STITUTE OF ENGIN	EERING & TECHNO	LOGY			
			Ma	ngalpally(V), Ibrahimpa	ntnam(M), R.R.Dist.				
				CONTROL SY	STEMS				
		Course Instructo (EE404PC)	or: Mr Gyanesh Singh				Clas s:	EEE II (A)	
Session	Date	Topic to be covered	link for ppt	Link for PDF	Link for small projects	Course Learning Outcomes	CO Mapping	Teaching Methodology	Reference Text Books
Session		covereu		NIT-1 Introduction to					
1		Introduction to subject	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L1:Remember	CO1	Chalk & Talk	T1-CH1
		Brief description of syllabus	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system				
		Explanation of	https://drive.google.co	https://drive.google.	https://ece-eee.final-				

	outcomes and	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	projects.in/t/control-				
	course	<u>XJebUYUTswnspAn</u>	WXHXJebUYUTs	system				
	outcomes. Concepts of		<u>wnspAn</u>					
	Control							
	Systems-	1 //1:	https://drive.google.	1 // 6" 1				
	Open Loop	https://drive.google.co m/drive/folders/109m	com/drive/folders/1	https://ece-eee.final-				
	and closed	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
	loop control	XJebUYUTswnspAn	<u>WXHXJebUYUTs</u>	system				
	systems and	TIS CO C T C TS WINSPITIT	<u>wnspAn</u>	System			G1 11 0	
2	their				I 2 d d		Chalk &	T1-CH1
2	differences		https://drive.google.		L2:understand		Talk	11-CH1
	Different	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	examples of	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	control	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control-				
3	systems	<u>AJebu Y U I SwnspAn</u>	wnspAn	system	L4:Analyze		PPT	T1-CH1
	Classification		https://drive.google.					
	of control	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	systems &	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	Transfer function and	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control- system			Chalk &	
4	its properties	AJeoc I CTSWIISPAII	wnspAn	system	L2:understand		Talk	T1-CH1
<u> </u>	Explaination	1 //1:	https://drive.google.	1 // 27 -	22.anderstand		- 4111	1.0111
	of Feedback	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	systems &	m/drive/folders/109m Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
	Feed-Forward	XJebUYUTswnspAn	WXHXJebUYUTs	system			Chalk &	
5	Characteristics	-22 CC C T C T S W 11 S P T 11	wnspAn	2,500	L2:understand		Talk	T1-CH3
	Effects of		1,, //1:					
	feedback on control	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-				
	systems &	m/drive/folders/1o9m	o9mXw9Ago0cw5S	year-				
	Sensitivity of	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-				
	control	<u>XJebUYUTswnspAn</u>	wnspAn	system			Chalk &	
6	systems		1		L2:understand		Talk	T1CH3
	Introduction							
	Mathematical		https://drive.google.					
	models of	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	mechanical transitional	m/drive/folders/109m Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
	system with	XJebUYUTswnspAn	WXHXJebUYUTs	system				
	differential	243COCT CTSWIISPAII	wnspAn	system			Chalk &	
7	equations				L2:understand		Talk	T1CH3
	1	https://drive.google.co	https://drive.google.	https://ece-eee.final-				
	Problems on	m/drive/folders/109m	com/drive/folders/1	vear-				
	mechanical	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	projects.in/t/control-			G1 11 0	
0	transitional	XJebUYUTswnspAn	WXHXJebUYUTs	system	T 4 1		Chalk &	TI CHO
8	system		wnspAn https://drive.google.	· ·	L4:analyze	-	Talk	T1-CH2
	Introduction	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	Mathematical	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	models of	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-			Chalk &	
9	mechanical	<u>XJebUYUTswnspAn</u>	wnspAn	system	L2:understand		Talk	T1-CH2
		https://drive.google.co	https://drive.google.	https://ece-eee.final-				
	rotational	m/drive/folders/1o9m	com/drive/folders/1	vear-				
	system with	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	projects.in/t/control-			Cl11 0	
	differential	XJebUYUTswnspAn	WXHXJebUYUTs	system	L2:understand		Chalk & Talk	T1-CH2
	equations		wnspAn https://drive.google.		L2.unuci stanu		1 aik	11-СП2
	Problems on	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	mechanical	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	rotational	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control-			Chalk &	
10	system	AJEUU I U I SWIISPAII	wnspAn	system	L4:analyze		Talk	T1-CH2
	*Conversion		https://drive.google.					
	of mechanical	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	system to electrical	m/drive/folders/109m Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
	system-force	XJebUYUTswnspAn	WXHXJebUYUTs	system			Chalk &	
1	voltage and	12000 TO TO WHOPFIII	wnspAn	3,50011	L4:analyze		Talk	T1-CH2
11	voltage and							

1 1	force current	I				1		1
	analogy							
	Transfer	https://drive.google.co	https://drive.google.	https://ece-eee.final-			Chalk &	
	Function of DC Servo	m/drive/folders/109m	com/drive/folders/1	year-			Talk and	
	motor - AC	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S WXHXJebUYUTs	projects.in/t/control-			practical experim	
12	Servo motor.	<u>XJebUYUTswnspAn</u>	wnspAn	system			ent	T1-CH4
		https://drive.google.co	https://drive.google.	https://ece-eee.final-				
		m/drive/folders/1o9m	com/drive/folders/1	year-				
		Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S WXHXJebUYUTs	projects.in/t/control-				
		<u>XJebUYUTswnspAn</u>	wnspAn	system	L2:understand			
		https://drive.google.co	https://drive.google.	https://ece-eee.final-			Chalk &	
		m/drive/folders/109m	com/drive/folders/1	vear-			Talk and	
	Synchro transmitter	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S WXHXJebUYUTs	projects.in/t/control-			practical experim	
13	and Receiver	<u>XJebUYUTswnspAn</u>	wnspAn	system	L2:understand		ent	T1-CH4
- 15	Block diagram		wiispi iii		221411401544114			11 011.
	representation	https://drive.google.co	https://drive.google.	https://ece-eee.final-				
	of systems	m/drive/folders/109m	com/drive/folders/1	year-				
	considering electrical	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S WXHXJebUYUTs	projects.in/t/control-				
	systems with	<u>XJebUYUTswnspAn</u>	wnspAn	system			Chalk &	
14	examples		•		L2:understand		Talk	T1-CH4
		https://drive.google.co	https://drive.google.	https://ece-eee.final-				
		m/drive/folders/1o9m	com/drive/folders/1 o9mXw9Ago0cw5S	year-				
	Block diagram	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-			Chalk &	
15	algebra	<u>XJebUYUTswnspAn</u>	wnspAn	system	L2:understand		Talk	T1-CH2
		https://drive.google.co	https://drive.google.	https://ece-eee.final-				
	Problems on	m/drive/folders/109m	com/drive/folders/1 o9mXw9Ago0cw5S	year-				
	block	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-			Chalk &	
16	diagrams	<u>XJebUYUTswnspAn</u>	wnspAn	system	L4:analyze		Talk	T1-CH2
	Representatio	1	https://drive.google.	1 // 67.1				
	n by Signal flow graph &	https://drive.google.co m/drive/folders/109m	com/drive/folders/1	https://ece-eee.final- year-				
	Reduction	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	projects.in/t/control-				
	using mason's	XJebUYUTswnspAn	WXHXJebUYUTs wnspAn	system			Chalk &	
17	gain formula.		whop? th		L4:analyze		Talk	T1-CH2
							Chalk & Talk	T1-CH2
							Tunk	
			https://drive.google.					
		https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
		m/drive/folders/109m Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
		XJebUYUTswnspAn	WXHXJebUYUTs	system				
			wnspAn					
	Problems on signal flow							
18	signal flow graphs				L4:analyze			
19	8	ı	n	sentaion Hour	1		ı	•
20		UNIT-II		<i>Mock test-1</i> lysis of Standard Test S	Sanola			
		UNII-II	<u>-</u>	lysis of Standard Test S	orginais			_
	Introduction to Time	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-			Chalk & Talk	T1-CH5
	Response &	m/drive/folders/109m	o9mXw9Ago0cw5S	year-			1 alk	
	Standard test	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-				
21	signals	<u>XJebUYUTswnspAn</u>	wnspAn	system	L2:understand	CO2		
	Time domain	https://drive.google.co	https://drive.google.	https://ece-eee.final-			Chalk &	T1-CH5
	specifications	m/drive/folders/1o9m	com/drive/folders/1	year-			Talk	
22	order and, type of the	Xw9Ago0cw5SWXH XJebUYUTswnspAn	o9mXw9Ago0cw5S WXHXJebUYUTs	projects.in/t/control- system	L2:understand			
22	type of the	AJCOU I U I SWIISPAII	WAIIAJEUUTUIS	System	L2.underständ	1	l	

1 1	l I4	I	I A	1	I	ı	İ	
	system Problems on		wnspAn					
	time domain							
	specifications							
	Time response						Chalk &	T1-CH5
	of first order & Second						Talk and practical	
	order systems	https://drive.google.co	https://drive.google.	https://ece-eee.final-			experim	
	-	m/drive/folders/109m	com/drive/folders/1	vear-			ent	
	Characteristic	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S WXHXJebUYUTs	projects.in/t/control-				
	Equation of	<u>XJebUYUTswnspAn</u>	wnspAn	system				
	Feedback control		, nopi in					
23	systems				L2:understand			
	systems	1 //1:	https://drive.google.	1 // 61	22.andersame		Chalk &	T1-CH5
		https://drive.google.co m/drive/folders/109m	com/drive/folders/1	https://ece-eee.final- year-			Talk	
	Problems on	Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	projects.in/t/control-				
24	transient	XJebUYUTswnspAn	WXHXJebUYUTs	system	L4:analyze			
24	response		wnspAn		L4:anaryze		Chalk &	T1-CH5
							Talk	11 0115
			https://drive.google.					
		https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
		m/drive/folders/109m Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
		XJebUYUTswnspAn	WXHXJebUYUTs	system				
			wnspAn	","				
	Type number							
	of the systems							
	and error							
25	constants		1 //1!		L2:understand			
	Steady state errors &	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-				
	Problems on	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	steady state	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control-			Chalk &	
26	errors	AJebu Yu IswnspAn	wnspAn	system	L2:understand		Talk	T1-CH5
	700 0						Chalk &	
	Effects of proportional	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-			Talk and with	
	derivative,	m/drive/folders/109m	o9mXw9Ago0cw5S	year-			simulati	
	proportional	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control-			on	
	integral	AJebu i u i swiispAii	wnspAn	system			experim	
27	systems.				L2:understand		ent	T1-CH5
		UN	IT-III Frequency-	Response Analysis				
	The concept							
	of stability &	https://drive.google.co	https://drive.google.	https://ece-eee.final-				
	Location of roots in S-	m/drive/folders/109m	com/drive/folders/1 o9mXw9Ago0cw5S	year-				
	plane for	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-				
	stability	<u>XJebUYUTswnspAn</u>	wnspAn	system				
28	analysis		_		L2:understand	C03	Challe 0-	
							Chalk & Talk	Т1-СН6
	Stability		httm://d=: 1					
	analysis with	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-				
	characteristic	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	equation of	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control-			Challe 0-	
29	control systems	AJEUU I U I SWISPAII	wnspAn	system	L2:understand		Chalk & Talk	Т1-СН6
	Routh stability	1 //1:	https://drive.google.	1 //	22.anderstand		Tuik	11 0110
	criterion &	https://drive.google.co m/drive/folders/109m	com/drive/folders/1	https://ece-eee.final-				
	Problems on	M/drive/folders/109m Xw9Ago0cw5SWXH	o9mXw9Ago0cw5S	year- projects.in/t/control-				
20	Routh	XJebUYUTswnspAn	WXHXJebUYUTs	system	I 4 1		Chalk &	T1 CH
30	criterion		<u>wnspAn</u>	J -	L4:analyze	1	Talk	T1-CH6

31	qualitative stability and conditional stability & The root locus concept	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	Т1-СН6
32	construction of root loci	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk and with simulati on experim ent	Т1-СН7
33	Problems on root locus	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L4:analyze	Chalk & Talk	Т1-СН7
34	Problems to find dominant poles & effects of adding poles and zeros to G(s) H(s) on the root loci	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L4:analyze	Chalk & Talk	T1-CH7
35	# Bridge Class-2	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system			
	Introduction Frequency Response Analysis & definitions of Frequency	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system			
36	domain specifications		wiispAii		L2:understand	Chalk & Talk	T1-CH8
37	frequency domain specifications for a second order system	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	Т1-СН8
38	Correlation between time domain and frequency domain specifications & Introduction to frequency response plots	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1-CH8
39	Procedure to draw bode plots & determine phase margin and gain margin and stability analysis	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	PPT	Т1-СН8
40	Problems on bode plots	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L4:analyze	Chalk & Talk	Т1-СН8

	Determination	I	i	i	1	ı	ı	1 1
	of Frequency						Chalk &	
	domain	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-			Talk and	
	specifications	m/drive/folders/109m	o9mXw9Ago0cw5S	year-			with	
	and transfer	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-			simulati	
	function from	<u>XJebUYUTswnspAn</u>	wnspAn	system			on .	
41	the Bode				I Aromolyuro		experim ent	T1-CH8
41	Diagram Problems to		https://drive.google.		L4:analyze		ent	11-Спо
	determine	https://drive.google.co	com/drive/folders/1	https://ece-eee.final-				
	transfer	m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
	function from	Xw9Ago0cw5SWXH XJebUYUTswnspAn	WXHXJebUYUTs	projects.in/t/control-			Chalk &	
42	bode diagram	AJeou I U I SwiispAii	wnspAn_	system	L4:analyze		Talk	T1-CH8
							Chalk &	
	Interestina	https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-			Talk and	
	Introduction to Polar Plots	m/drive/folders/1o9m	o9mXw9Ago0cw5S	year-			with simulati	
	& Procedural	Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-			on	
	steps to draw	<u>XJebUYUTswnspAn</u>	wnspAn	system			experim	
43	polar plots				L2:understand		ent	T1-CH8
							Chalk &	T1-CH8
							Talk	
			1 //1:					
		https://drive.google.co	https://drive.google. com/drive/folders/1	https://ece-eee.final-				
		m/drive/folders/109m	o9mXw9Ago0cw5S	year-				
		Xw9Ago0cw5SWXH	WXHXJebUYUTs	projects.in/t/control-				
		<u>XJebUYUTswnspAn</u>	wnspAn	system				
4.4	Problems on				T 4 1			
44	polar plots	LINIT	LIV Introduction	to Controller Design	L4:analyze			
44		UNIT	-IV Introduction	to Controller Design	L4:analyze			
44	polar plots Introduction	UNIT		to Controller Design	L4:analyze			
44	polar plots Introduction to Nyquist		https://drive.google.		L4:analyze			
44	Introduction to Nyquist plot &	https://drive.google.co m/drive/folders/109m	https://drive.google. com/drive/folders/1	https://ece-eee.final-	L4:analyze			
44	Introduction to Nyquist plot & Stability	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final-	L4:analyze			
44	Introduction to Nyquist plot & Stability analysis using	https://drive.google.co m/drive/folders/1o9m	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs	https://ece-eee.final-	L4:analyze			
45	Introduction to Nyquist plot & Stability	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final- year- projects.in/t/control-	L4:analyze	CO4	PPT	T1-CH9
	Introduction to Nyquist plot & Stability analysis using Nyquist	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.	https://ece-eee.final- year- projects.in/t/control- system		CO4	PPT	Т1-СН9
	Introduction to Nyquist plot & Stability analysis using Nyquist criterion	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final-		CO4	PPT	Т1-СН9
	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final- year- projects.in/t/control- system		CO4		Т1-СН9
45	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year-	L2:understand	CO4	Chalk &	
	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year- projects.in/t/control-		CO4		T1-CH9
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year- projects.in/t/control- system	L2:understand	CO4	Chalk &	
45	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final-	L2:understand	CO4	Chalk &	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year-	L2:understand	CO4	Chalk &	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-	L2:understand	CO4	Chalk &	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year- projects.in/t/control- system https://ece-eee.final- year-	L2:understand L2:understand	CO4	Chalk &	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH	https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand	CO4	Chalk & Talk	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m	https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 09mXw9Ag00cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google. com/drive/folders/1	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and simulati	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and simulati on	
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and simulati on experim	Т1-СН9
45	polar plots Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and simulati on experim	Т1-СН9
45	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams.	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and simulati on experim ent	Т1-СН9
45 46 47	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams.	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand L4:analyze	CO4	Chalk & Talk PPT and simulati on experim ent Chalk &	T1-CH9
45	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams.	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand	CO4	Chalk & Talk PPT and simulati on experim ent	Т1-СН9
45 46 47	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams.	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand L4:analyze	CO4	Chalk & Talk PPT and simulati on experim ent Chalk &	T1-CH9
45 46 47	Introduction to Nyquist plot & Stability analysis using Nyquist criterion Procedural steps to draw Nyquist plots Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams. Problems on Nyquist plot	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn https://drive.google.co	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn https://drive.google.	https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system https://ece-eee.final-year-projects.in/t/control-system	L2:understand L2:understand L4:analyze	CO4	Chalk & Talk PPT and simulati on experim ent Chalk &	T1-CH9

		<u>XJebUYUTswnspAn</u>	WXHXJebUYUTs wnspAn	system				
50	Introduction to compensation techniques & Lag compensator and procedure to design it	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand		Chalk & Talk	T1- CH10
51	Lead compensator & Lead Lag compensator and procedure to design it	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand		Chalk & Talk	T1- CH10
52	Problems on compensators & PID controllers	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L4:analyze		Chalk & Talk	T1- CH10
53		UNIT-V Stat		sentaion Hour ad Concepts of State Va	riables			
	Introduction to State Space Analysis of Continuous Systems & its advantages and	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system			Chalk &	T1-
54	applications Definitions of state space, state variables ,state model & State diagram representation of a control system	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	CO5	Talk Chalk & Talk	T1- CH12
56	State space representation of an electrical network and problems on it & derivation of state models from block diagrams	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand		Chalk & Talk	T1- CH12
57	derivation of state models from transfer function using signal flow graph method	https://drive.google.co m/drive/folders/109m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand		Chalk & Talk	T1- CH12
58	derivation of state models from transfer function using direct decomposition method	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand		Chalk & Talk	T1- CH12

59	derivation of state models from transfer function using cascade method	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1- CH12
60	derivation of state models from transfer function using canonical method	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1- CH12
61	derivation of transfer function from state models & state diagram	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1- CH12
62	Diagonalizatio n & Introduction To State Equations	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1- CH12
63	State Transition Matrix And Its Properties & Methods To Determine The Matrix & Problems on state transition matrix	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1- CH12
64	Solving the Time invariant state Equations(non homogeneous)	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L4:analyze	Chalk & Talk	T1- CH12
65	Solving the Time invariant state Equations(non homogeneous)	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XJebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L4:analyze	Chalk & Talk	T1- CH12
66	*Controllabilit y & Observability * (content baye)	https://drive.google.co m/drive/folders/1o9m Xw9Ago0cw5SWXH XIebUYUTswnspAn	https://drive.google. com/drive/folders/1 o9mXw9Ago0cw5S WXHXJebUYUTs wnspAn	https://ece-eee.final- year- projects.in/t/control- system	L2:understand	Chalk & Talk	T1- CH12

^{* (}content beyond syllabus)

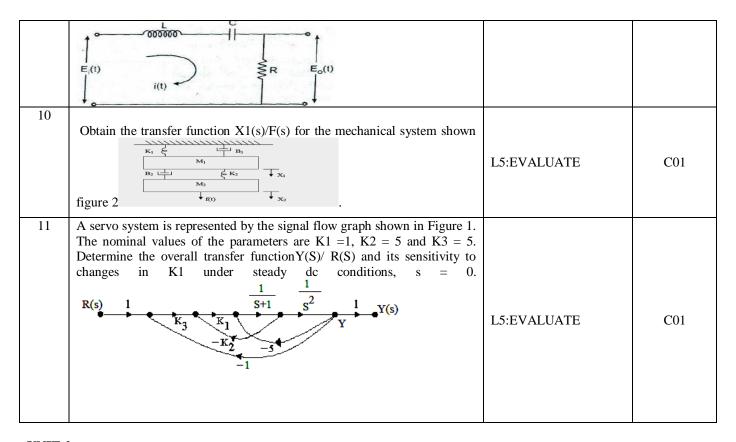
IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CO's		Program Outcomes (PO's)						Outc	gram cific omes SO)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	-	-	-	-	-	-	-	-	3	2
CO2	2	3	2	2	1	-	-	-	-	-	-	-	3	2
CO3	2	3	3	2	2	-	-	-	-	-	-	-	3	2
CO4	3	3	3	2	2	-	-	-	-	-	-	-	3	2
CO5	2	1	2	2	1	-	-	-	-	-	-	-	2	2
CO6	2	2	2	2	2	-	-	-	-	-	-	-	2	2

1: Slight (Low) : Moderate (Medium) 3: 3

3: Substantial (High) -: None

X. QUESTION BANK: (JNTUH)


UNIT.1

Short Answer Question

S.N o	Question	BloomsTaxonomy Level	Course Outcome
1	Write the Manson's gain formula. What are the basic properties of SFG?	L2:UNDERSTAND	C01
2	Differentiate between linear and non linear control systems. Describe the open loop and closed loop control system	L4:ANALYZE	C01
3	List out the applications of Synchro transmitter and receiver? Syncro acts as error detector? Justify?	L3:APPLY	C01
4	Explain the effect of negative feedback in control systems. Find the TF of following system (figure 1). $ \begin{array}{c} R(s) \\ \hline Figure 1 \end{array} $	L2:UNDERSTAND	C01
5	What is feed back? Explain the effects of feedback. List the advantages and disadvantages of feedback systems.	L2:UNDERSTAND	C01
6	Explain the rules for block diagram reduction technique.	L2:UNDERSTAND	C01
7	Find the impulse response of the system described $G(s) = \frac{2}{s^2 + 2s + 6}$, $H(s) = \frac{1}{s + 2}$.	L5:EVALUATE	C01
8	When is a control system said to be robust? Explain with suitable example.	L2:UNDERSTAND	C01
9	Describe a two phase a.c. servomotor and derive its transfer function.	L2:UNDERSTAND	C01
10	Give the advantages of transfer function.	L2:UNDERSTAND	C01

S.No	Overtion	BloomsTaxonomy	Course
5.110	Question	Level	Outcome

1.	Compare the AC and DC servomotors. For the system represented by the block diagram shown in figure 1. Find C/R. R G_1 G_2 G_3 C	L5:EVALUATE	C01
2	Find the overall gain $C(s)/R(s)$ for the signal flow graph shown in figure 2.	L5:EVALUATE	C01
3	Derive the transfer function armature controlled DC servo motor and draw its block diagram.	L6:CREATE	CO1
4	Explain any two examples of closed loop control systems.	L2:UNDERSTAND	CO1
5	Explain translatory and rotary elements of mechanical systems Discuss electrical analogous of mechanical rotational systems	L2:UNDERSTAND	CO1
6	Write the differential equations to represent the following system in figure below and draw its electrical equivalent circuit	L5:EVALUATE	C01
7	a) Find the transfer function of series RLC circuit b) Obtain the transfer function $Y(s)/R(s)$ from block diagram shown below figure by using the signal flow graph method. $H_2(s)$ $H_3(s)$ $H_3(s)$ $H_3(s)$	L5:EVALUATE	C01
8	Obtain the transfer function for the system represented by block diagram shown below figure using the block diagram reduction technique. R(s) + G ₁ + G ₂ + G ₃ + G ₄ + C(s)	L5:EVALUATE	C01
9	Find the transfer function of the network given figure.	L5:EVALUATE	C01

UNIT-2 Short Answer Questions:

S.No	Question	BloomsTaxonomy Level	Course Outcome
1.	What are the standard test signals used in control systems?	L1:REMEMBER	CO2
2	What is the effect of damping on peak overshoot in transient response? Define characteristic equation	L2:UNDERSTAND	CO2
3	Define rise time,peaktime,delaytime,settling time and peak over shoot.	L2:UNDERSTAND	CO2
4	What is the effect of P, PI controller on the system performance?	L2:UNDERSTAND	CO2
5	What is steady state response?	L2:UNDERSTAND	CO2
6	Distinguish between type and order of a system.	L4:ANALYZE	CO2

S.No	Question	BloomsTaxonomy	Course
		Level	Outcome
1.	The open-loop transfer function of a unity feedback control system is given by $G(s)=9/s(s+3)$. Find the natural frequency of response, damping ratio, damped frequency and time constant.	L5:EVALUATE	CO2
2	For unity feedback control system the open loop transfer function $G(s)=10(s+2)/s^2(s+4)$. Find the ess when the input is $r(t)=3-2t+3t^2$ and find Kp ,Kv , and Ka.	L5:EVALUATE	CO2

3	Explain the following:	L2:UNDERSTAND	CO2
	a) Steady state error b) positional error constant		
	c) Velocity error constant d) acceleration error constant		
	e) Step response.		
4	A unity feed-back control system has its open-loop transfer function	L5:EVALUATE	CO2
	$G(s) = \frac{4s+1}{4s^2}$ given by		
	given by $4s^2$		
	Determine an expression for the time response when the system is		
	subjected to a) Unit impulse function b) Unit step input function.		
	o) Chit stop input runous.		
5	$G(s) = \frac{1}{s}$	L5:EVALUATE	CO2
	A unity feedback system has $G(s) = \frac{1}{s(s+4)}$. The input to the system is		
	described by $r(t) = 4+6t+2t$ 3P Find the steady state error.		
6	A unity feedback control system has an open loop transfer function G(s)	L5:EVALUATE	CO2
	= 16/S(S+2). Determine the natural frequency, damping factor, percentage overshoot and time at which the maximum overshoot occurs		
	percentage overshoot and time at which the maximum overshoot occurs		
	1		
7	Determine the error coefficients and static error for $G(s) = \frac{1}{s(s+1)(s+10)}$, $H(s)$	L5:EVALUATE	CO2
	Determine the error coefficients and static error for $(s+1)(s+10)$, $H(s)$		
	= s + 2 b) Find out the output of the undamped second order system when the		
	input applied to the system is unit step input.		
8	Obtain the unit – step response of a unity feedback control system	L5:EVALUATE	CO2
0	Obtain the unit – step response of a unity feedback control system $G(s) = \frac{1}{s}$	LSEVALUATE	CO2
	whose open –loop transfer function is $G(s) = \frac{1}{s(s+1)}$. Obtain also the		
	rise time, peak time, maximum overshoot and settling time.		
9	The open loop transfer functions of three systems are given as	L5:EVALUATE	CO2
	a) $\frac{4}{(s+1)(s+2)}$ b) $\frac{2}{s(s+4)(s+6)}$ c) $\frac{5}{s^2(s+3)(s+10)}$		
	Determine respectively the positional, velocity and acceleration error		
	constants for these systems. Also for the system given in determine the		
	steady state errors with step input $u(t)=1$; ramp input $r(t)=t$ and		
	$ r(t) = \frac{1}{2}t^2 $ acceleration input		
10	Find the delay time rise time real time cettling time and real	L5:EVALUATE	CO2
10	Find the delay time, rise time, peak time, settling time and peak overshoot for unity feedback system with open loop transfer function.	LSEVALUATE	CO2
	$G(s) = \frac{16}{s(s+6)}$		
	s(s+6)		

UNIT-3 Short Answer Questions:

S.No	Question	BloomsTaxonomy	Course
		Level	Outcome

1.	Define a stable system.(or) Define stability.	L2: UNDERSTAND	CO3
2.	Explain the basics of root locus plot.	L2: UNDERSTAND	CO3
3.	Write the necessary conditions of Routh - Hurwitz criteria.	L2: UNDERSTAND	CO3
4.	Write the drawbacks of RH criteria.	L2: UNDERSTAND	CO3
5.	Mention the condition for system stability using Bode plot.	L2: UNDERSTAND	CO3
6.	Define angle of departure and angle of arrival in root locus.	L2: UNDERSTAND	CO3
7.	What are frequency domain specifications?	L2: UNDERSTAND	CO3
8.	Define Gain margin and Phase margin.	L2: UNDERSTAND	CO3
9.	Define i) Minimum phase transfer function ii) Non minimum phase transfer function.	L2: UNDERSTAND	CO3
10.	Enlist the steps for the construction of Bode plots.	L2: UNDERSTAND	CO3
11.	Define Phase cross over and gain cross over frequency.	L2: UNDERSTAND	CO3
12.	Write short notes on the correlation between the time and frequency response	L2: UNDERSTAND	CO3

S.No	Question	Blooms Taxonomy Level	Course Outcome
1.	Sketch the Root locus for. Also find range of 'K' for system to be stable. $G(s)H(s) = \frac{K}{s(s+4)(S+11)}$ a)Determine the RH stability of given characteristic equation,	L5:ANALYZE	CO3
2.	a)Determine the RH stability of given characteristic equation, $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0.$ b) Sketch the root locus of the system, whose open loop transfer function $G(s) = \frac{K(s+15)}{s(s+1)(s+5)}$ $G(s) = \frac{Ke^{-0.23}}{s(s+2)(s+8)}$ Given $G(s) = \frac{Ke^{-0.23}}{s(s+2)(s+8)}$ Given $G(s) = \frac{Ke^{-0.23}}{s(s+2)(s+8)}$ Find K so that the system is stable with, a) $G(s) = \frac{Ke^{-0.23}}{s(s+2)(s+8)}$	L2:UNDERSTAND	CO3
3.	$G(s) = \frac{Ke^{-0.2s}}{s(s+2)(s+8)}$ Given $s = \frac{(s+2)(s+8)}{s(s+2)(s+8)}$. Find K so that the system is stable with, a) $GM = 2db, b) PM = 45^{0}$	L5:EVALUATE	CO3
4.	Explain Conditional stability & Relative stability. What is a Routh-Hurwitz criterion and explain its stability predicting conditions.	L2:UNDERSTAND	CO3
5.	Explain Frequency domain specifications in detail. Also write the comparison between times domain and frequency domain specifications. function	L2:UNDERSTAND	CO3
6.	Find the phase margin and gain margin for the system with open loop transfer function. $G(s) = \frac{5(1+0.01S)}{s(1+0.1S)}$	L3:APPLY	CO3
7.	The open loop transfer function is given by , Determine the stability of closed loop system. $G(s)H(s) = \frac{K(1+4s)}{s^2(1+s)(1+2s)}$, Determine the stability of closed loop system.	L3:APPLY	CO3
8.	Using Routh-Hurwitz criterion check whether systems represented by the following characteristics equations are stable or not. Comment on the location of roots. Determine the frequency of sustained oscillations if any S³+20S²+9S+100=0	L3:APPLY	CO3
9.	Explain the following control action with neat schematic diagram and derive its necessary equations. i) Proportional ii) Integral iii) Derivative	L3:APPLY	CO3

	iv) Proportional plus integral		
10.	$G(s) = \frac{K(S+3)}{S(S+6)(S^2+2S+2)}$ Sketch the root locus of the system:	L3:APPLY	CO3
	Sketch the root locus of the system: $S(S+6)(S^2+2S+2)$ i)		
	Find marginal value of K		
	ii) Find the value of K for damping ratio of 0.5		
11.	Sketch the bode plot for the given system whose H(s) =1, and	L3:APPLY	CO3
	$G(S) = \frac{1}{S(S-S)(S-S)}$		
	$G(S) = \frac{1}{S(S+4)(S+0.2)}$ a) Find gain margin b) Find the phase margin for damping ratio of 0.5		
	Tot damping ratio of the		
12.		L5:EVALUATE	CO3
	G(s)=500/s(1+0.1s) Find the peak overshoot and time peak overshoot. If		
1.0	peak overshoot is to be reduced by 20%, what is the change in the gain?	I A I D ID ED CIT A DE	GOA
13.	Explain the effects of adding poles and zeros to G(s)H(s) on the root loci by considering one the example.	L2:UNDERSTAND	CO3
14.	Sketch the root locus plot of a unity feedback system whose open loop	L3:APPLY	CO3
14.	$K(s^2-2s+2)$	L3./M1L1	603
	$G(s) = \frac{K(s^2 - 2s + 2)}{(s + 2)(s + 3)(s + 4)}.$		
	1.F 1S		
15.	j č	L3:APPLY	CO3
	open-loop transfer function $G(s)$ with $K = 1$. Determine the phase margin		
	and gain margin. Find the value of K to reduce the phase margin by 10° .		
	N(s) K C(s)		
	$\begin{array}{c c} R(s) & \hline \\ \hline$		
	s(s+1)(s+10)		
16.	Sketch the root loci for the system shown in Figure 2.	L3:APPLY	CO3
	R(s) K C(s)		
	s(s+1)(s ² +4s+13)		
	5(5+1)(5+45+13)		
	ν		95.5
17.	9 (3) =	L3:APPLY	CO3
	For unity feedback system given by $s(s + 0.5)(s^2 + 0.6s + 10)$ a) Find the stability using RH criterion b) for stable system find the range		
	of K value.		
	of K value.		
L			1

UNIT-4 Short Answer Questions:

S.No	Question	BloomsTaxonomy Level	Course Outcome	
1.	What is polar plot? Define gain and phase margins	L2:UNDERSTAND	CO3	
2.	Explain Nyquist stability criterion.	L2:UNDERSTAND	CO3	
3.	Distinguish between polar plots & Nyquist plots	L2:UNDERSTAND	CO3	
4.	What is "Nyquist Contour"?	L2:UNDERSTAND	CO3	

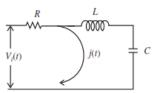
5.	Explain the significance of compensation?	L2:UNDERSTAND	CO3
			1

Long Answer	Ť	DI T	C
S.No	Question	BloomsTaxonomy	Course
		Level	Outcome
1.	With the help of Nyquist plot assess the stability of a	L2:UNDERSTAND	CO3
	system $G(s) = 2/S(S+3)$. What happens to stability if		
	the numerator of the function is changed from 3to 30?		
2.	The open-loop transfer function of a system is given by	L3:APPLY	CO3
	C(x) K		
	$G_p(s) = \frac{K}{s(1+0.1s)(1+0.2s)}$ Design a lag-lead		
	compensator to meet the Kv=100sec ⁻¹ and Phase		
	$margin \ge 30^{\circ}$.		
2	C	LAUNDEDGEAND	CO2
3.	Discuss the effect of adding poles &zeros to G(s)H(s)	L2:UNDERSTAND	CO3
	on the shape of Nyquist plots 7.		
4.	A system is given by $G(s) = S+1/S(S+2)(S+4)$. Sketch	L5:EVALUATE	CO3
	the Nyquist plot & hence determine the stability of the		
	system.		
5.	Explain the need of lead compensator and obtain the	L2:UNDERSTAND	CO3
	transfer function of lead- lag compensator.		
6.	The open loop transfer function of certain unity	L3:APPLY	CO3
	feedback control system is given by $G(S) = S(S + 4)$		
	(S + 80) K. It is desired to have the phase margin to be		
	at least 330 and velocity error constant KV = 30 Sec-1		
	. Design a phase lag series compensator?		

UNIT-5 **Short Answer Questions:**

S.No	Question	BloomsTaxonomy Level	Course Outcome
1.	What is state diagram?.	L2:UNDERSTAND	CO4
2.	Define: i) State ii) State variables iii) State space representation	L2:UNDERSTAND	CO4
3.	Discuss the significance of State Space Analysis?	L2:UNDERSTAND	CO4
4.	Mention any four advantages of state variable representation	L2:UNDERSTAND	CO4
5.	What are the properties of state transition matrix?	L2:UNDERSTAND	CO4

S.No	Question	BloomsTaxonomy	Course
		Level	Outcome


1.	Find the state transition matrix for the following matrix, $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.$	L2:UNDERSTAND	CO4
2.	The state equation of a linear-time invariant system is given as, $ \dot{X} = \begin{bmatrix} 0 & 5 \\ -1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix} r \text{ and } y = \begin{bmatrix} 1 & 1 \end{bmatrix} X, $ and , Find the transfer function and draw the state diagram.	L2:UNDERSTAND	CO4
3.	Obtain the state space representation for the following differential equation. $\ddot{y} + 5\dot{y} + 7y = 114$ Where 'y' is the output and 'u' is the input.	L2:UNDERSTAND	CO4
4.	Considering the vector matrix differential equation describe the dynamics of the system as $X = [0 1; -6 -5]$. Determine state transition matrix?	L2:UNDERSTAND	CO4
5.	A feed back system has a closed loop transfer function. $Y(S)/V(S)=10(S+4)/S(S+1)(S+3)$. Construct canonical state models for this system?	L3:APPLY	CO4
6.	Obtain the state model of the system whose transfer function is given as $Y(S)/V(S)=10(S+4)/S(S+1)(S+3)$.	L3:APPLY	CO4
7.	Consider the matrixA=[1 2 3;2 7 4;5 7 9] . Compute e ^{At} ?	L5:EVALUATE	CO4
8.	Obtain the state variable representation of an armature controlled D.C motor?	L2:UNDERSTAND	CO4

OBJECTIVE QUESTIONS:

JNTUH:

UNIT-1

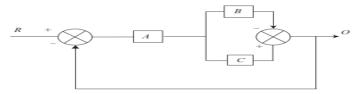
1. For the network shown in figure P2.43, V_i (t) is the input and i(t) is the output. Transfer function V_i (t)/i(t) is given by

(a)
$$\frac{Cs}{LCs^2 + RCs + 1}$$

(b)
$$\frac{C}{LCs^2 + RCs + 1}$$

(c)
$$\frac{Cs}{RCs^2 + LCs + 1}$$

(d)
$$\frac{C}{RCs^2 + LCs + 1}$$


2. The transfer function of the system is given by

(b)
$$\frac{O}{R} = \frac{A + B + C}{1 + AB + AC}$$

(c)
$$\frac{O}{R} = \frac{AB + AC}{ABC}$$

(d)
$$\frac{O}{R} = \frac{AB + AC}{1 + AB + AC}$$

3. In regeneration feedback the transfer function is given by

(a)
$$\frac{G(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

(b)
$$\frac{G(s)}{R(s)} = \frac{G(s)H(s)}{1 - G(s)H(s)}$$

(c)
$$\frac{G(s)}{R(s)} = \frac{G(s)H(s)}{1 + G(s)H(s)}$$

(d)
$$\frac{G(s)}{R(s)} = \frac{G(s)}{1 - G(s)H(s)}$$

- 4. Type of the system depends on the
 - (a) No. of its poles
 - (c) No. of its real poles

- (b) Difference between the no. of poles and zeros
- (d) No. of poles it has at the origin
- 5. A system has the following transfer function

$$G(s) = \frac{100(s+5)(s+50)}{s^4(s+10)(s^2+3s+10)}$$

The type and order of the system are respectively

6. The step response of the system is
$$c(t) = 1 - 5e^{-t} + 10e^{-2t} - 6e^{-3t}$$
. Then the impulse response is

(a)
$$5e^{-t} - 20e^{-2t} + 18e^{-3t}$$

(b)
$$5e^t - 20e^{2t} + 18e^{-3t}$$

(c)
$$5e^{-t} + 20e^{-2t} + 18e^{-3t}$$

(d)
$$5e^{-t} + 20e^{-2t} - 18e^{-3t}$$

$$G(s) = \frac{K}{s(s+4)}$$

7. Given a unity feedback with

The value of K for the damping ratio of 0.5 is

forward path transfer function G(s) is given by
$$G(s) = \frac{10(1+s)}{s^2(s+1)(s+5)}$$

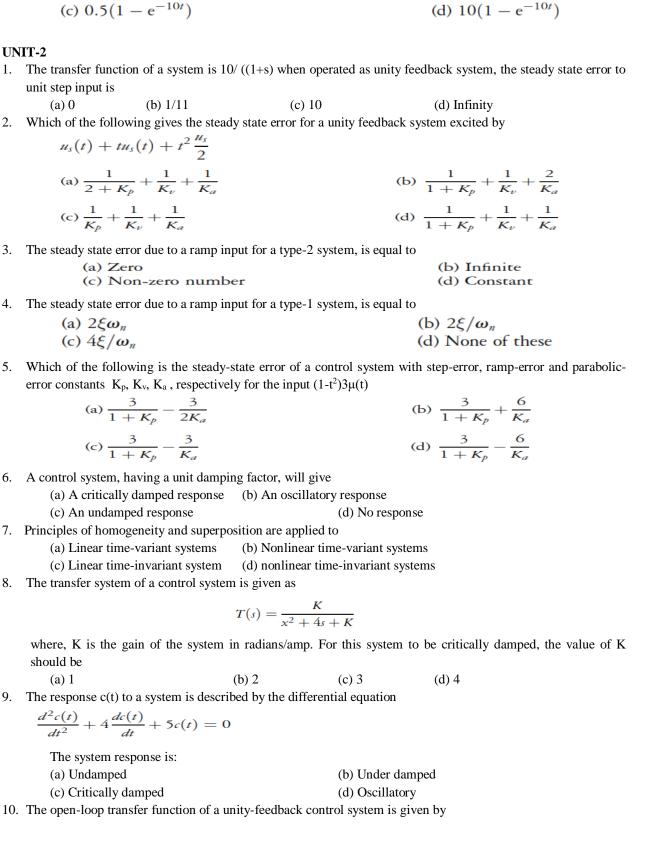
8. A unity feedback control system has forward path transfer function G(s) is given by

$$r(t) = \frac{t^2}{2}U(t)$$

The steady state error due to unit parabolic input

(b)
$$0.5$$

If the time response system the following expression of given by $y(t) = 5 + 3\sin(\omega t + \delta_1) + e^{-3t}\sin(\omega t + \delta_2) + e^{-5t}$


Then the steady state part of the above response is given by

(a)
$$5 + 3\sin(\omega t + s_1)$$

(b)
$$5 + 3\sin(\omega t + \delta_1) + e^{-3t}\sin(\omega t + \delta_2)$$

(c)
$$5 + e^{5t}$$

10. The impulse response of a system is $5e^{-10t}$, its step response is equal to

(b) $5(1 - e^{-10t})$

(a) $0.5e^{-10t}$

$$G(s) = \frac{K}{s(s+1)}$$

If the gain K is increased to Infinity, then the damping ratio will tend to become

(a) Zero

(b) 0.707

(c) Unity

(d) Infinity

UNIT-3

1. A second-order system exhibits 100% overshoot. Its damping coefficient is:

(a) Equal to 0

(b) Equal to 1

(c) Less than 1

(d) Greater than 1

In the type-1 system, the velocity error is:

(a) Inversely proportional to the bandwidth of the system

(b) Directly proportional to gain constant

(c) Inversely proportional to gain constant

(d) Independent of gain constant

3. A second-order system has the damping ratio ξ and undamped natural frequency of oscillation ω_n . The settling time at 2% tolerance band of the system is

(a)
$$\frac{2}{\xi \omega_n}$$
 (c) $\frac{4}{\xi \omega_n}$

(b) $\frac{3}{\xi \omega_n}$

(c) $\xi \omega_n$

When the time period of an observation is large, the type of error is:

(a) Transient error

(b) Steady-state error

(c) Half-power error

(d) Position-error constant

5. An under damped second-order system with negative damping will have the two roots:

(a) On the negative real axis as real roots

(b) On the left-hand side of the complex plane as complex roots

(c) On the right-hand side of the complex plane as complex conjugates

(d) On the positive real axis as real roots

6. Which of the following expresses the time at which second peak in step response occurs for a second-order system?

(a)
$$\frac{\pi}{\omega_n\sqrt{1-\xi^2}}$$

(b) $\frac{2\pi}{\boldsymbol{\omega}_n \sqrt{1-\xi^2}}$

(c)
$$\frac{3\pi}{\omega_n\sqrt{1-\xi^2}}$$

(d) $\frac{\pi}{\sqrt{1-\xi^2}}$

7. If the characteristic equation of a closed-loop system is $s^2 + 2s + 2 = 0$, then the system is

(a) Over damped

(b) Critically damped

(c) Under damped

(d) Undamped

8. For making an unstable system stable:

(a) Gain of the system should be increased.

(b) Gain of the system should be decreased.

(c) The number of zeros to the loop transfer function should be increased.

(d) The number of poles to the loop-transfer function should be increased.

While forming a Routh's array, the situation of a row zeros indicates that the system:

(a) Has symmetrically located roots (b) Is not sensitive to variations in gain

(c) Is stable

(d) Is Unstable

10. When all the roots of the characteristic equation are found in the left of an s-plane, the response due to the initial condition will:

(a) Increase to infinity as time approaches infinity

(b) Decrease to zero as time approaches infinity

(c) Remain constant for all time

(d) Be oscillating

11.	The Routh-Hurwitz criterion cannot be applied when the characteristic equation of the system contains any					
coefficients which are:						
	(a) Negative real and exponential functions of s					
	(b) Negative real, both exponential and sinusoidal functions of s					
	(c) Both exponential and sinusoidal functions of s					
	(d) Complex, both exponential and sinusoidal functions of s					
12.	Consider the following statements: Routh–Hurwitz criterion gives					
	1. Absolute stability					
	2. The number of roots lying on the right half of the s-plane.					
	3. The gain margin and phase margin					
	Which of the statements are correct?					
	(a) 1, 2 and 3 (b) 1 and 2					
	(c) 2 and 3 (d) 1 and 3					
13.	A system has a single pole at the origin. Its impulse response will be:					
	(a) Constant (b) Ramp (c) Decaying exponential (d) Oscillatory					
14.	The open-loop transfer function of a unity-feedback control system is					
	$G(s) = \frac{K(s+10)(s+20)}{s^2(s+2)}$					
	The closed-loop system will be stable, if the value of K is:					
	(a) 2 (b) 3 (c) 4 (d) 5					
15.	Which one of the following application software is used to obtain an accurate root locus plot?					
10.	(a) LISP (b) MATLAB (c) dBASE (d) Oracle					
16.	Consider the following statements with regard to the bandwidth of a closed-loop system:					
	1. In a system, where the low-frequency magnitude is 0 dB on the Bode diagram, the bandwidth is measured at					
	the -3-dB frequency.					
	2. The bandwidth of the closed-loop control system is a measurement of the range of fidelity of response of the					
	systems.					
	3. The speed of response to a step input is proportional to the bandwidth.					
	4. The system with the larger bandwidth provides a slower step response and lower fidelity ramp response.					
	Which of the statements give above are correct?					
	(a) 1, 2 and 3 (b) 1, 2 and 4 (c) 1, 3 and 4 (d) 2, 3 and 4					
17.	Which of the following is not necessarily valid for root-locus pattern?					
	(a) The n finite zeros and m poles are plotted on the s-plane. Then $(m - n)$ indicates the number of non-finite					
	zeros.					
	(b) The number of poles gives the number of loci.					
	(c) A value of s on the real axis is a point on the root locus, if the total number of poles and zeros on the real					
	axis to the right of the point is even.					
	(d) There are as many asymptotes as non-finite zeros.					
18.	An open-loop transfer function of a feedback system has m poles and n zeros $(m > n)$. Consider the following					
	statements:					
	1. The number of separate root loci is m.					
	2. The number of separate root loci is n.					
	3. The number of root loci approaching infinity is (m-n).					
	4. The number of root loci approaching infinity is (m-n).					
	Which of the statements given above are correct?					
	(a) 1 and 4 (b) 1 and 3					
	(c) 2 and 3 (d) 2 and 4					
19.	Which of the following effects are correct in respect of addition of a pole to the system loop transfer function?					
	1. The root locus is pulled to the right.					

- 2. The system response becomes slower.
- 3. The steady state error increases.

Of these statements:

(a) 1 and 2 are correct.

(b) 1, 2 and 3 are correct.

(c) 2 and 3 are correct.

- (d) 1 and 3 are correct.
- 20. The instrument used for plotting the root locus is called:
 - (a) Slide rule

- (b) Spiral
- (c) Synchro
- (d) Selsyn

UNIT 4

- 1. If the compensated system shown in Figure P7.50 has a phase margin of 60 at the crossover frequency of 1 rad/sec, then the value of the gain K is:
- (a) 0.366 (b) 0.732 (c)1.366 (d) 2.738

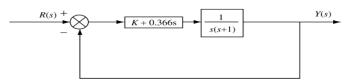


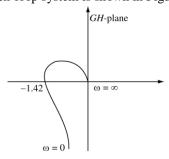
Figure P7.50 Figure for Objective Question 175.

2. In the GH (s) plane, the Nyquist plot of the loop-transfer function $G(s)H(s) = \frac{G(s)H(s)}{s}$ passes through the negative real axis at the point:

(a)
$$(-0.25, j0)$$

(c) $(-1, j0)$

(b)
$$(-0.5, j0)$$


(d)
$$(-2, i0)$$

- 3. The gain margin of a unity-feedback control system with the open-loop transfer function $G(s) = \frac{s+1}{s^2}$ is:
 - (a) 0
- (b) $1/\sqrt{2}$
- $(c)\sqrt{2}$

(d) α

$$G(s) = \frac{as+1}{s^2}$$

- 4. The open-loop transfer function of a unity feedback control system is given as value of a to give a phase margin of 45 is equal to:
 - (a) 0.141
- (b) 0.441
- (c) 0.841
- (d) 1.141
- 5. The Nyquist plot of a loop transfer function G(s)H(s) of a closed-loop control system passes through the point (-1, j0) in the G(s)H(s) plane. The phase margin of the system is:
 - (a) (
- (b) 45
- (c) 90
- (d) 180
- 6. The polar plot of a type -1, 3 pole, open-loop system is shown in Figure P7.49. The closed-loop system is:

- (a) Always stable
- (b) Marginally stable
- (c) Unstable with one pole on the right half s-plane

7.	The Nyquist plot of C The gain margin of th (a) Infinite		equal to:	tem passes throug)) point in the GH-plane. 1) Zero
8.	A unity-feedback syst The Nyquist plot of C (a) Never	_	_		(d) Thrice	
9.	The gain and phase cr (a) 0.632 and 1.26 (c) 0.485 and 0.632	rossover frequenci (b) 0.632 and 0.4	es in rad/sec are re		(6) 111100	
10.	Which of the following			ag network?		
11	The system with the o	onan loon transfar	function		has a gair	n margin of:
11.	(a) -6dB	(b)0dB	(c) 3.5 dB	(d) 6 dB	_	i margin or.
	The gain margin and (a) 0 dB, 08 (b) α , α	(c) α; 0	(d) 88:5	dB; α		are:
13.	Non-minimum phase- (a) Zeros in the right- (c) Poles in the right-	hand s-plane	(b) Zeros only in	ansfer function, w the right-half s-pl s in the left-half s-	ane	
14.	is -125, the phase man	rgin of the system	is:	•	$G(j\omega)$ at the	gain crossover frequency
15.	(a) -125 Consider the Bode-ma	(b) -55 agnitude plot show	(c) 55 vn in Figure P7.21	(d) 125		

(d) Unstable with two poles on the right half s-plane

UNIT 5

1.	A state variable system unit step input u(t) has the state transition equation	with the initial condition	and the
2.	Given the homogenous state space equation	the steady state value of	giver
	the initial value of is		
3.	The state variable equations of a system are: (a) Controllable but not observable (b) Observable but r (c) Neither controllable nor observable (d) Controllable		
4.		scribed by the state equations	
5.	,	the matrix A in the state-space formual to:	$\mathbf{A} \mathbf{X} = \mathbf{A} \mathbf{X} + \mathbf{B} \mathbf{u}$
6.	Given a system represented by equation		

The equivalent transfer function representation G(s) of the system is:

7. A system is described by state equation

The state transition matrix of the system is:

8. The state equation of a system is

The poles of this system are located at:

$$(a) -1, -9$$

(b)
$$-1$$
, -20

9. The state space representation of a system is given the transfer function of the system is:

Then

WEBSITES:

- 1. http://nptel.iitm.ac.in
- 2. http://www.ieeecss.org
- 3. www.wikipedia.com
- 4. www.wikibooks.org
- 5. www.google.com

EXPERT DETAILS:

- 1. Prof. M. Gopal, Department of Electrical Engineering, IIT Delhi
- 2. Prof. S.D. Agashe, Department of Electrical Engineering, IIT Bombay
- 3. Prof. S. Majhi, Department of Electrical Engineering, IIT Guwahati
- 4. Dr. IndraniKar, Department of Electrical Engineering, IIT Guwahati

JOURNALS:

- 1. IEEE Control Systems Magazine
- 2. International Journal of Systems, Control and Communications
- 3. The International Journal of INTELLIGENT CONTROL AND SYSTEMS
- 4. ICGST International Journal on Automatic Control and System Engineering
- 5. Journal of Control Engineering and Technology

LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Concept of Control Systems
- 2. Mathematical Modeling of Control Systems
- 3. Block Diagram reduction Techniques
- 4. Signal flow Graph.
- 5. Time Response Analysis
- 6. Time Domain Specifications
- 7. Frequency Response Analysis
- 8. Root Locus Techniques
- 9. Bode Plots

CASE STUDIES /SMALL PROJECTS:

- 1. Design of PI controller for speed control of induction motor.
- 2. Speed control of DC Servo motor with mathematical equations
- 3. Closed loop control of BLDC motor to run exactly at rated speed.
- 4. Control and stability analysis of two wheeled road vehicles.
- 5. Realization of transfer function using OP-AMP