

RENEWABLE ENERGY SOURCES

Subject Code: (MT831OE/ME853PE)

Regulations : R16 - JNTUH

Class : IV Year B.Tech EEE II Semester

Department of Electrical and Electronics and Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

RENEWABLE ENERGY SOURCES (MT8310E/ME853PE) COURSE PLANNER

I. COURSE PURPOSE:

As humanity progresses in the 21st century, it would in future encounter major challenges in terms of ensuring adequate and equitable provision of energy. While the 20th century was characterized by growing dependence on fossil fuels, the current century would have to deal with the depletion of reserves of fossil fuels, growing environmental problems as a result of production and use of these fuels as well as the threat of climate change, which results from the emissions of GHGs (greenhouse gases) due to the combustion of fossil fuels. There are, therefore, several reasons for the world to explore with some urgency alternative sources of energy supply.

Renewable energy is an option that promises a clean and healthy environment for future generations. The use of renewable energy offers countries around the world the chance to improve their energy security and spur economic development. Renewables solve the two-way problem faced by us today in the energy sector - first it solves the problem depleting stock (that is the reason they are called renewable) and secondly, they do not cause any significant pollution.

The module 'Renewable Energy Sources' describes the various renewable energy sources available to us. Also, discusses the current and future prospective, uses, and challenges.

SCOPE OF COURSE:

This course explores each of the principal renewable energy sources in turn. Each technology is examined in terms of the relevant physical principles; the main technologies involved; their costs and environmental impact; the size of the potential renewable resource; and their future prospects.

II. PRE REQUISITES:

Knowledge of thermodynamics, heat transfer, energy engineering, applied thermodynamics and heat cycles.

III. COURSE OBJECTIVE:

This course explores each of the principal renewable energy sources in turn. Each technology is examined in terms of the relevant physical principles; the main technologies involved; their costs and environmental impact; the size of the potential renewable resource; and their future prospects.

- To explain the concepts of Non-renewable and renewable energy systems
- To outline utilization of renewable energy sources for both domestic and industrial applications
- To analyse the environmental and cost economics of renewable energy sources in comparison with fossil fuels.

IV Course Outcomes

Sl.NO	Description	Bloom's Taxonomy level
CO1.	Understanding of renewable energy sources	L2: Understanding
CO2.	Knowledge of working principle of various energy systems	L2: Understanding
CO3.	Capability to carry out basic design of renewable energy systems	L2: Understanding

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignment/ Exam
PO2	Problem analysis : Identify, formulate, review research literature, and analyze engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignment/ Exam

			V
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignment/ Exam
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignment/Exams
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	Assignment/Exams
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	Assignment/Exams
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	1	Assignment/Exams
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	1	Assignment/Exams
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3	Assignment/Exams
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Assignment/Exams
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	-
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	Assignment/Exams

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Level	Proficiency assessed by
PSO1	The student will be able to apply the knowledge of Mathematics, Sciences and engineering fundamentals to formulate, analyze and provide solutions for the problems related to Mechanical engineering and communicate them effectively to the concerned.	3	Lectures, Assignments
PSO2	Design mechanical systems in various fields such as machine elements, thermal, manufacturing, industrial and inter-disciplinary fields by using various engineering/technological tools to meet the mercurial needs of the industry and society at large.	2	Lectures, Assignments
PSO3	The ability to grasp the latest development, methodologies of mechanical engineering and posses competent knowledge of design process, practical proficiencies, skills and knowledge of programme and developing ideas towards research.	2	Lectures, Assignments

VII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CO!*	Program Outcomes (PO's)								PSO ATTAINMENT						
CO's	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1 .	3	2	2	2	2	1	1	1	3	1	1	3	3	2	2
CO2 ·	3	2	2	2	2	1	1	1	3	1		3	3	2	2

VIII. JNTUH SYLLABUS

UNIT-I

Global and National Energy Scenario: Over view of conventional & renewable energy sources, need & development of renewable energy sources, types of renewable energy systems, Future of Energy Use, Global and Indian Energy scenario, Renewable and Nonrenewable Energy sources, Energy for sustainable development, Potential of renewable energy sources, renewable electricity and key elements, Global climate change, CO2 reduction potential of renewable energy- concept of Hybrid systems.

UNIT-II

Solar Energy: Solar energy system, Solar Radiation, Availability, Measurement and Estimation, Solar Thermal Conversion Devices and Storage, Applications Solar Photovoltaic Conversion solar photovoltaic, solar thermal, applications of solar energy systems.

UNIT-III

Wind Energy: Wind Energy Conversion, Potential, Wind energy potential measurement, Site selection, Types of wind turbines, Wind farms, wind Generation and Control. Nature of the wind, power in the wind, factors influencing wind, wind data and energy estimation, wind speed monitoring, classification of wind, characteristics, applications of wind turbines, offshore wind energy — Hybrid systems, wind resource assessment, Betz limit, site selection, wind energy conversion devices. Wind mill component design, economics and demand side management, energy wheeling, and energy banking concepts. Safety and environmental aspects, wind energy potential and installation in India.

UNIT-IV

Biogas: Properties of biogas (Calorific value and composition), biogas plant technology and status, Bio energy system, design and constructional features. Biomass resources and their classification, Biomass conversion processes, Thermo chemical conversion, direct combustion, biomass gasification, pyrolysis and liquefaction, biochemical conversion, anaerobic digestion, types of biogas Plants, applications, alcohol production from biomass, bio diesel production, Urban waste to energy conversion, Biomass energy programme in India..

UNIT-V

Ocean Energy: Ocean wave energy conversion, principle of Ocean Thermal Energy Conversion (OTEC), ocean thermal power plants, tidal energy conversion, Tidal and wave energy its scope and development, Scheme of development of tidal energy. 1. Small hydro Power Plant: Importance of small hydro power plants and their Elements, types of turbines for small hydro, estimation of primary and secondary power. 2. Geothermal Energy: Geothermal power plants, various types, hot springs and steam ejection.

SUGGESTED BOOKS:

TEXT BOOK:

- 1. Non-Conventional Energy Sources by G.D Rai
- 2. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986

REFERENCES:

- 1. Kishore VVN, Renewable Energy Engineering and Technology, Teri Press, New Delhi, 2012
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, U.K, 1996.

NPTEL WEBSITES

https://nptel.ac.in/courses/112104225/22

https://nptel.ac.in/courses/112104225/1

GATE SYLLABUS: NOT APPLICABLE

IES SYLLABUS: NOT APPLICABLE

IX. COURSE PLAN:

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

LESSON PLAN ACADEMIC YEAR 2020-2021 II SEM

Course Instructor :Mr.V Sampath Kumar/Ms.S.Marlin Class: EEE-IV-A/B

Subject: Renewable Energy Sources WEF:26/03/2021

	2 ta 2 j e e e	. Kenewabie Ene	gj Boarces		VVEI: .20/03/2021			
LNo.	WEEK No.	Topics	Link for PDF	Link for PPT	Link for Small Projects/ Numericals(if any)	COURSE LEARNING OUTCOMES	TEACHING METHODOLOG Y	REFERENC ES
1		Global and National Energy Scenario: Role and potential of new and renewable source,	https://drive.goo gle.com/file/d/1J nD73p3MC5DI 7bML4_jVkV- qXSKph0gs/vie w?usp=sharing	https://drive. google.com/ file/d/1KcFb 3M7K3XHq ICTNQiPSc 2YTFGB8af S/view?usp =sharing	https://drive.g oogle.com/fil e/d/1RAvK7b 3nDDCVX64 wbnNpJmDv DOEEh4Ru/v iew?usp=shari ng	Explain	РРТ	Text book 1
2	1	Student Presentations	Student Pro	Student Presentations		Student Presentations		
3		Types of Renewable energy sources and needs , physics of the Sun, the solar constant,	https://drive.g oogle.com/fil e/d/1fFbdnmh 8mctQ5QeRs	https://drive.go ogle.com/file/d /1KcFb3M7K3 XHqICTNQiP Sc2YTFGB8af S/view?usp=s haring	https://drive.g oogle.com/fil e/d/14Zw5rhb DXNKmTSp gLm819uEO3 DkTsbkn/vie w?usp=sharin g	Explain	PPT	
4		Extra - terrestrial and terrestrial solar radiation,	e/d/1kMDLIO xl- 2DNIS2aLW	https://drive.go ogle.com/file/d /1ePFz9SRSyj H0AYzrdxA7o GXgszeh8QIM /view?usp=shar ing	https://drive.g oogle.com/fil e/d/1clGrWa DmGLgSZ p 5sOyXwF08z nKaVVpn/vie w?usp=sharin g	Understand	PPT	Text book 1
5	2	Solar radiation on tilted surface, Instrument for measuring solar radiation and sun shine, solar radiation data.	oogle.com/III	https://drive.go ogle.com/file/d /1KcFb3M7K3 XHqICTNQiP Sc2YTFGB8af _S/view?usp=s haring	https://drive.g oogle.com/fil e/d/1RAvK7b 3nDDCVX64 wbnNpJmDv DOEEh4Ru/v iew?usp=shari ng	Understand	PPT	Text book 1
6		Student Presentations	Student Pre	sentations		S	tudent Presentations	3

	1	T	1	1			2500	7
7		Mock 1	-	-		Explain	PPT	Text book 1
8		SOLAR ENERGY COLLECTION: Flat plate collectors, Flat plate & concentrating collectors	https://drive.g oogle.com/fil e/d/1gxs4Usz ud IzhMtDteJ T3gs3cw1EJ OXn/view?us p=sharing	https://drive.go ogle.com/file/d /1DwNQ7q- KK20ZugAe- R0qQ0fw5_U V3xtP/view?us p=sharing		Explain	PPT	Text book 1
9	3	Classification of concentrating collectors, orientation and thermal analysis	https://drive.g oogle.com/fil e/d/1_X3edX bKVpTsZD- mC1bFveCkp DcR_cHQ/vie w?usp=sharin g	https://drive.go ogle.com/file/d /10nevqd411Q2 pnnMAeBbvVr M8 Z4espMY/ view?usp=shari ng		Understand	PPT	Text book 1
10		SOLAR ENERGY STORAGE AND APPLICATIONS: sensible, latent heat and stratified storage	https://drive.g oogle.com/fil e/d/1mk- 6t0QS0vTEL wnvJ87iMgvo ovRSGyvH/vi ew?usp=shari ng	https://drive.go ogle.com/file/d /13G6urQOKK UdyPQCJX DI mWup0ys2ISw o/view?usp=sh aring	https://drive.g oogle.com/fil e/d/1_rv8Qn W2XFF9CdB VisV9MKLP RZgmoEb4/vi ew?usp=shari ng	Understand	PPT	Text book 1
11		Student Presentations	Student P	resentations		S	Student Presentations	S
12	4	Solar ponds, Solar Applications - Solar heating / cooling technique, solar Distillation and drying, Photo voltaic energy conversion	https://drive.g oogle.com/fil e/d/1femfpcv Mqo3YMZZ4 U- Pjr_R2Jn34Sz pV/view?usp =sharing	https://drive.go ogle.com/file/d /1Iuzfdi- WPmnvK6wM JrtYi1veZYJv 1K_/view?usp =sharing		Understand	PPT	Text book 1, 2
13		Revision	-	-		Explain	PPT	Text book 1, 2
14		Student Presentations	Student P	resentations		S	Student Presentations	S
15	4	WIND ENERGY: Sources and potentials, Horizontal and vertical axis wind mills	https://drive.g oogle.com/fil e/d/11MVHG = qjF0pDs9th9 mFvLYTq21 KyJgp0/view? usp=sharing	https://drive.go ogle.com/file/d /1qeuduZTnw3 WDwbezFcdq WV5Tsxvi7n3 _/view?usp=sh aring	https://drive.g oogle.com/fil	Study	PPT	Text book 1, 2
16	5	Design of Horizontal and vertical axis wind mills,	https://drive.g oogle.com/fil e/d/1XpUl5i8 MWstXpSDe- 6lxYTEg8apF Ly0C/view?u sp=sharing	https://drive.go ogle.com/file/d /1vzoHyajRYx qGruyVFPos5 HfbClx06mw1/ view?usp=shari ng	e/d/1_rv8Qn W2XFF9CdB VisV9MKLP RZgmoEb4/vi ew?usp=shari ng	Explain	PPT	Text book 1
17		Performance characteristics, Benz Criteria	https://drive.g oogle.com/fil e/d/1aVge- ZqPMqrGBe	https://drive.go ogle.com/file/d /1QZM- 9pP10o4ynzSu		Application	РРТ	Text book 1

TEM	
	,\\3\
)EII
SON ANT THE WALL LIE BASSED EN	2

							SOUND THE BANKED EACH	27
			<u>UWWgNYQc</u>	<u>0Pu6OJnR1Yo</u>				
			NY4vIbAIBr/	Oc8By/view?u				
			view?usp=sha	sp=sharing				
			ring					
18		Student						
10		Presentations	Student Presentations			;	Student Presentation	ıs
			https://drive.g	https://drive.go				
			oogle.com/fil	ogle.com/file/d				
10			e/d/1vRhuBJ7	/1k9Zulbu8iS-				
19		BIO-MASS	CoKfbcOWi4 ti1GJTKi2q4	Ur90cDun Jk6 u-				
		:Principles of Bio	RWna/view?u	PZL09Kx/view				
		conversion	sp=sharing	?usp=sharing		Application	PPT	Text book 1
			https://drive.g	https://drive.go				
			oogle.com/fil	ogle.com/file/d				
20		A 1	<u>e/d/10kT6ogT</u>	/1R37445AVM				
20		Anaerobic and aerobic digestion.	9U18yo4Qy9i L1cwEXIiq73	vhD5ok4hXV1 gGeitGaNNa2				
		Types of Bio gas	yYz/view?usp	T/view?usp=sh				
		digesters	=sharing	aring		Explain	PPT	Reference 1
			https://drive.g	https://drive.go				
			oogle.com/fil	ogle.com/file/d				
	6		e/d/1XEMxu	/1F2MiGZwad w-				
21			YFcXz77F4r2	W- Kz6hQPjLhC				
		IC engine	zaFma2O8jpd TYue/view?	<u>MkjxMlwbxO</u>				
		operation and	usp=sharing	P/view?usp=sh			1	
		economic aspects		aring		Explain	PPT	Text book 1
22		Student						
		Presentations	Student P	resentations		Student Presentations		
23				_				
		Revision	1 //1.			Explain	PPT	Text book 1
			https://drive.g	https://drive.go ogle.com/file/d				
			e/d/1EDNdIst	/17aR1h7mQv				
24		GEO	XcTw8GKTl	DFpbeRTNxFg				
		THERMAL	ylpIwd16WN	sduj31XQUSw				
		ENERGY :	GLgvaf/view?	p/view?usp=sh		A 1	DDT	T (1 1 1
<u> </u>	ŀ	Resources	usp=sharing	aring		Application	PPT	Text book 1
			https://drive.g	https://drive.go ogle.com/file/d	https://drive.g			
		Types of wells,	e/d/1FR2GxH	/1FR2GxH4_1	oogle.com/fil			
25		methods of	4_1AUFm3U	AUFm3U824o	e/d/1_rv8Qn			
	7	harnessing the	824od6eCNpc	d6eCNpchacj7	W2XFF9CdB			
		Energy, Potential in India	hacj73/view? usp=sharing	3/view?usp=sh aring	VisV9MKLP RZgmoEb4/vi	Application	PPT	Text book 1
-	ł		usp-snaring	armg	ew?usp=shari	Application	rrı	Text DOOK I
26		Student Presentations	Student D	resentations	ng		Student Presentation	
-	ł	1 resentations	https://drive.g	https://drive.go			Judent Fresentation	15
		OCEAN	oogle.com/fil	ogle.com/file/d				
		ENERGY :	e/d/1WPyx_r	/1sxWB3EQB				
27		OTEC, Principles	qKhZGL662x	WQj3OdweI86				
		of utilization,	Dyj5hqM91Ic	j nIIKhrDwem				
		setting of OTEC	vNnMW/view ?usp=sharing	d/view?usp=sh		Application	DDT	Text book
	L	plants,	rusp=snaring	aring		Application	PPT	1,2

TE	TINA .
	5 30
ORPARTMIC WALLE	BAYED EQUICATION
55	

							BUT ATTERED WALLE BANCO BOOK	37
28		Thermodynamic cycles, Tidal and wave energy	https://drive.g oogle.com/fil e/d/12814UJi9 qbJvCs5F54D grvxvUz0tJJi B/view?usp=s haring	https://drive.go ogle.com/file/d /1jwmyWSZNI pqZ9KANxwO DKWBS1vlf9 Uxl/view?usp= sharing		study	PPT	Text book 1,2
29	8	Potential and conversion techniques, Mini Hydel Power plants and their economics	https://drive.g oogle.com/fil e/d/1rqaNu8t XD_yu2Xs0I Azyo55FNuZ VrLsy/view?u sp=sharing	https://drive.go ogle.com/file/d /18lvfnvbUhfX R70ygasVbrm bzfCEpFNfI/vi ew?usp=sharin g		Explain	PPT	Text book 1,2
30		Student Presentations	Student P	resentations		\$	Student Presentation	S
31		Mock 2	-	-		Explain	PPT	Reference 1
32	9	DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations	https://drive.g oogle.com/fil e/d/1- 039k7KIKKc 2Pc HiRW32 z8TDGPwT WrV/view?us p=sharing	https://drive.go ogle.com/file/d /1tAZIsABklrP 5PfXvW8scTm IzRK2zVHWR /view?usp=shar ing		Explain	PPT	Text book 1,2
33		Thermo-electric generators, Seebeck, Peltier and Joule Thomson effects	https://drive.g oogle.com/fil e/d/1FR2GxH 4_1AUFm3U 824od6eCNpc hacj73/view? usp=sharing	https://drive.go ogle.com/file/d /123nOalIBnG QAYbXe oA6 IqAjIFiwvC4P/ view?usp=shari ng		Explain	PPT	Text book 1,2
34	10	Student Presentations	Student P	resentations	https://drive.g	S	Student Presentation	S
35		Figure of Merit, materials, applications, MHD generators, principles, dissociation and ionization	https://drive.g oogle.com/fil e/d/1v6g3gtE YQE YVyZT 9Cwwr4exXn U70lew/view ?usp=sharing	https://drive.go ogle.com/file/d /123nOalIBnG QAYbXe oA6 IqAjIFiwvC4P/ view?usp=shari ng	oogle.com/fil e/d/1G9RGY VbwlSSs2Kfc JXlp8-vQ- 1r8H8Cr/view ?usp=sharing	Study	PPT	Text book 1,2
36		Hall effect, Magnetic Flux, MHD accelerator, MHD engine	https://drive.g oogle.com/fil e/d/1DNxxX3 yfSPIFrzhln- MSm4WWLI Qj5i2f/view?u sp=sharing	https://drive.go ogle.com/file/d /1TPdLX3nOZ bHdvCfSZLD2 nCCsNXc2tQi 2/view?usp=sh aring		Illustrate	PPT	Text book 1,2
37	11	MHD engine, power generation systems, electro gas dynamic conversion, economic aspects, Fuel cells, principles, Faraday's laws	https://drive.g oogle.com/fil e/d/1cPiBUv ma6Kq8wv5 U0cPCQ_6uR 7VgI54I/view ?usp=sharing	https://drive.go ogle.com/file/d /10qdLjF0rvR V2w5EFKDUn lOWyvImPjK0 k/view?usp=sh aring		Explain	PPT	Text book 1,2

38	Student Presentations	Student Pr	resentations	S	tudent Presentations	s	
39	thermodynamic aspects, selection of fuels and operating conditions	https://drive.g oogle.com/fil e/d/1- 039k7KIKKc 2Pc HiRW32 z8TDGPwT WrV/view?us p=sharing	https://drive.go ogle.com/file/d /19x7I02Hyira 65nqs5tMur9A j8oV7Zk9W/vi ew?usp=sharin g	Explain	PPT	Text 1,2	book

SUGGESTED BOOKS:

TEXT BOOK:

- 1. Non-Conventional Energy Sources by G.D Rai
- 2. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986

REFERENCES:

- 1. Kishore VVN, Renewable Energy Engineering and Technology, Teri Press, New Delhi, 2012
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, U.K, 1996.

NPTEL WEBSITES

https://nptel.ac.in/courses/112104225/22

https://nptel.ac.in/courses/112104225/1

GATE SYLLABUS: NOT APPLICABLE IES SYLLABUS: NOT APPLICABLE

X. QUESTION BANK: (JNTUH) DESCRIPTIVE QUESTIONS:

UNIT-I

Short Answer Questions-

Sl.No	Question	Blooms Taxonomy	Course Outcome
		Level	
1	What are conventional & renewable energy sources?	L2	CO 1
2	Explain types of renewable energy systems?	L2	CO 2
3	What is Future of Energy Use?	L2	CO 1
4	What is Global and Indian Energy scenario?	L2	CO 2
5	What is the concept of Hybrid systems?	L2	CO 1

Long Answer Questions-

_	8		
1	Explain need & development of renewable energy sources?	L2	CO 2
2	Explain types of renewable energy systems?	L2	CO 1
3	Explain Renewable and Nonrenewable Energy sources?	L2	CO 2
4	Explain in brief Energy for sustainable development, Potential of renewable energy sources?	L2	CO 1
5	Explain in detail about renewable electricity and key elements?	L2	CO 2
6	Explain the Global climate change, CO2 reduction potential of renewable energy	L2	CO 2

UNIT-II

Short Answer Questions-

	The first Company		
Sl.No	Question	Blooms Taxonomy	Course Outcome
		Level	
1	What is the standard value of solar constant?	L2	CO 1
2	Classify focusing type collectors.	L2	CO2
3	What is the role and potential of renewable source?	L2	CO 1

4	State the principle of solar radiation.	L2	CO 2
5	State the environmental impact of solar power.	L2	CO 2

Long Answer Questions-

1	Derive the expression for monthly average of hourly global radiation on a tilted surface.	L2	CO 1
2	Explain about Beam and Diffuse radiation.	L2	CO2
3	Define the following: i. Declination ii. Altitude angle iii. Solar Constant.	L2	CO 1
4	Explain extraterrestrial and terrestrial Radiation.	L2	CO 2
5	Explain the principle of conversion of solar energy into heat.	L2	CO 2
6	What features of solar energy make it attractive for use in irrigation water pump?	L2	CO 1
7	Explain the following terms (a) Flat plate (b) Paraboloidal dish.	L2	CO2
8	Explain in brief the Environmental impact of solar power.	L2	CO 1
9	Explain the role and potential of new and renewable energy sources.	L2	CO 2
10	With neat sketch explain the instrument for measuring solar radiation and sun shine.	L2	CO 2

UNIT-III

Short Answer Questions-

Sl.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain Wind Energy Conversion?	L2	CO 2
2	Explain Nature of the wind?	L2	CO 1
3	What is energy wheeling, and energy banking concepts?	L2	CO 2
4	Explain the – Hybrid systems of wind energy?	L2	CO 1
5	What is meant by Betz limit?	L2	CO 2

Long Answer Questions-

	alg Answer Questions-		
1	Write short notes on: i Wind Energy Conversion, Potential ii. Wind energy potential measurement?	L2	CO 2
2	Explain about types of wind turbines?	L2	CO 1
3	Explain Wind farms, wind Generation and Control?	L2	CO 2
4	Explain wind speed monitoring, classification of wind and its characteristics?	L2	CO 1
5	List out and explain Safety and environmental aspects, wind energy potential and installation in India?	L2	CO 2
6	Enumerate applications of wind turbines, offshore wind energy?	L2	CO 2
7	Explain site selection, wind energy conversion devices?	L2	CO 1
8	Explain Wind mill component design, economics and demand side management?	L2	CO 2

UNIT-IV

Short Answer Questions-

Sl.No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
1	Explain Calorific value and composition of Biogas?	L2	CO 1
2	How do you get biogas from plant wastes?	L2	CO 2
3	What are the most favorable sites for installing of wind turbines?	L2	CO 1
4	State the merits and demerits of Horizontal and Vertical	L2	CO 2

	windmills.		
5	What are the various advantages of anaerobic digestion?	L2	CO 1

Long Answer Questions-

1	Describe the main applications of wind energy.	L2	CO 2
2	Describe with a sketch the working of a wind energy system with main Components.	L2	CO 1
3	Derive the expression for power developed due to wind.	L2	CO 2
4	Explain the various factors a affecting the generation of biogas.	L2	CO 1
5	Explain various dry processes of bioenergy conversion in brief.	L2	CO 2
6	Draw the sketches of Digester suitable for high water table.	L2	CO 2
7	Explain with neat sketch Absolute segregation of slurry.	L2	CO 1
8	Explain about two chamber rectangular digester with floating gas holder and water seal.	L2	CO 2
9	Explain Biomass energy programme in India?	L2	CO 1
10	With neat sketch explain the types of Bio gas digesters.	L2	CO 2

UNIT-V

Short Answer Questions-

Question	Blooms	Course
	Taxonomy	Outcome
	Level	
State the fundamental principle of tidal energy generation.	L2	CO 1
What is small hydel development?	L2	CO 2
What is the fundamental principle in energy conversion from ocean waves?	L2	CO 1
What are the civil works design considerations for mini and micro	L2	CO 2
<u>, , , , , , , , , , , , , , , , , , , </u>	L2	CO 1
	State the fundamental principle of tidal energy generation. What is small hydel development? What is the fundamental principle in energy conversion from ocean waves?	Taxonomy Level State the fundamental principle of tidal energy generation. L2 What is small hydel development? L2 What is the fundamental principle in energy conversion from ocean waves? What are the civil works design considerations for mini and micro hydel power plants? L2

Long Answer Questions-

1	Explain the difference between geothermal plant and thermal plant.	L2	CO 2
2	Explain the various methods to extract geothermal energy.	L2	CO 1
3	Explain the potential of geothermal resources in India.	L2	CO 2
4	Explain Liquid dominated geothermal power plant with neat sketch.	L2	CO 1
5	Draw the diagram of geothermal field.	L2	CO 2
6	Explain the working of Anderson cycle OTEC system with neat sketch.	L2	CO 2
7	Explain the fundamental principle of tidal energy generation.	L2	CO 1
8	Explain vapor dominated geothermal power plant with neat sketch.	L2	CO 2
9	Explain the power generation from single ebb cycle system.	L2	CO 1
10	Explain the potential of geothermal energy in India.	L2	CO 2

OBJECTIVE QUESTIONS: JNTUH:

UNIT-1

1.	A photovoltaic cell converts
((a) Heat energy into mechanical energy (b) Chemical energy into electrical energy
((c) solar energy into electrical energy (d) electrical energy into chemical energy
2.	The value of solar constant is
3.	The highest rank of coal in which carbon content is about 90% is
4.	Non - conventional energy sources are available in form of
5.	The sun's outer visible layer is called and has temperature of about
6.	An artificial or natural body of water for collecting and absorbing solar radiation energy and storing it
as :	heat is known as
7.	Solar heat is directly converted into electricity by converters.

		2000
8.	Photovoltaic cell is a device which converts directly sunlight into	
9.	The current and voltage relationship in a solar cell is given by	.
10.	The two basic instruments that are employed for solar radiation measure	ment are and
11	. The relation between zenith (θ_z) and solar altitude (α) angles is	
(a	$\theta_z + \alpha = 60^0$ (b) $\theta_z + \alpha = 90^0$ (c) $\theta_z + \alpha = -90^0$ (d) $\theta_z + \alpha = 0^0$.	
TINITE	•	
UNIT-		
1.	On September 22^{nd} , 2001, the declination angle will be zero (b) $+23.45^{\circ}$ (c) -23.45° (d) $+180^{\circ}$	
2. (a)	zero (b) $+23.45^{\circ}$ (c) -23.45° (d) $+180^{\circ}$ Darrius type of rotor mill is used for velocity wind.	
3.	The amount of electromagnetic energy incident on a surface per unit time	ner unit area is known as
5.	The amount of electromagnetic energy incident on a surface per unit time	per unit area is known as
4.	A flat plate collector is used for many applications such as	
5.	The efficiency of a concentrating collector is	 `
6.	The basic components of solar water heater are	
7.	Which of the following is not a concentrating type of solar collector?	
	Parabolic trough collector (b) liquid heating collector	
	Fresnel lens collector (d) Mirror strip reflector	
8.	In a solar pond, the concentration and temperature are nearly constant in	
. ,	urface convective zone (b) non convective zone	
	torage zone (d) All the above	
9.	Which of the following is not a concentrating type of solar collector? Parabolic trough collector (b) liquid heating collector	
	Fresnel lens collector (d) Mirror strip reflector	
10.	•	
	Non concentrating collector (b) Flat plate type solar collector	
	Concentrating type solar collector (d) both (a) & (b)	
(-)	(*)	
UNIT	3	
1.	The phenomenon in which a lot of turbulence ensues, the lift decreases	and drag increases quite
	bstantially is called	
2.	Wind aero generators of WECS are generally classified as and	
3.	The expression for monthly average horizontal solar radiation H_{av} is given by	·•
4.	Efficiency of SPV module is typically%.	
5. 6.	A fuel cell is an electrochemical device that converts into The total power of a wind stream is proportional to	
	relocity of stream (b) (velocity of stream) ²	
(a) v	velocity of stream) ³ (d) 1 / velocity of stream	
7.		and .
8.	The kinetic energy of wind can be changed into or	
9.		
10	. Kinetic energy of the wind is given by	-
11	. Wind speed at which wind energy starts delivering shaft power is called	•
12	2. Vertical axis Wind machine among the following	
	Sail type wind machine (b) Multi-bladed wind machine	
(c)	Darrius type rotor (d) both (a) & (b)	
UNIT		
1.	The value of Betz coefficient (Cp) for a horizontal axis wind machine is	·
`	a) 16/27 (b) 2/3 (c) 8/27 (d) None The different types of wells for one thermal energy are	
2. 3.	The different types of wells for geo thermal energy are The two primary mechanisms for producing forces from the wind are	and
3. 4.	Diameter in landace and	_ and
5.	The two types of OTEC systems are and	
6	A limitation of ocean thermal energy power plant is	

7.	The rise and fall of water level follows a curve.		
8.	Total energy and power density can be written as		
9.	The average rate of release of geothermal energy from within the earth is around W/m ² .		
10 is most important fuel as its component is able to release more energy per			
UNIT	·-5		
1.	At the altitude angle of 30° , the magnitude of zenith angle will be		
2.	The angle between the direction of wind and direction perpendicular to the plane of blade is called		
3.	HAWT stands for		
4.	Okha wind farm in Gujarat has units of kw each.		
5.	Maximum power output of MHD generator is given by		
6.	The main causes of energy crisis are		
7.	Conventional energy sources are available in form of		
8.	Gaseous product consisting of methane and carbon dioxide is known as		
9.	Dissociation and Ionization are the principles for		
10.	The thermodynamic aspect for DEC is		
377	WEDGWIDG		
XI.	WEBSITES:		
1.	www.power-eng.com		
2. 3.	www.rwe.com		
3. 4.	www.iaea.org		
4. 5.	www.powerplantengineering.com		
	www.nae.edu		
6.	www.power-gen.com		
XII.	EXPERT DETAILS:		
1.	Dr B.Sudheer Prem Kumar, Professor & HOD (Mech), JNTU, Hyderabad		
2.	Dr AVSSK Gupta, Professor (Mech), JNTU, Hyderabad		
3.	Dr E.Ramjee, Professor (Mech), JNTU, Hyderabad		
4.	Dr M.V Ramana Murthy, Associate Professor (Mech), OU, Hyderabad		
5.	Dr Raja Banerjeee, Associate Professor, IIT Hyderabad		

XIII. JOURNALS:

1. International Journal of Energy Engineering

Nuclear Engineering and Design

International Journal of Energy Engineering

XIV. LIST OF TOPICS FOR STUDENT SEMINARS:

- Indian Energy Scenario and World Energy resources
- 2. Solar Thermal Energy conversion
- 3. Design of Wind Power Turbines
- 4. Bio Mass Energy from Municipal Waste
- 5. Thermo Electric Power Generation
- 6. Fuel cell Technology

CASE STUDIES / SMALL PROJECTS:

1. Preparing an automobile using solar energy

COLLEGE TRANSPORT FACILITY

The institute not only aspires for good academics but also cares for the safety, comfort & convenience of the students; which are the prerequisites for their good academic performance.

Hence for the students' convenience along with many other facilities, college offers transportation to all the students with its fleet of new, neat & clean buses. The college transport facility offers many advantages to the students such as

- 1. Reaching on time to college and hence punctual in attending the classes.
- 2. Comfortable journey with an assured seat in the bus.
- 3. Less strain during the journey, hence better performance in academic activities.
- 4. Safety of their belongings.
- 5. Presence of at least 2 faculty incharges in the bus ensures discipline & risk free travel (Especially for girl students).
- 6. Returning home promptly after the completion of the college.
- 7. No scope of ragging due to the presence of faculty incharges in the bus.
- 8. Fleet of 40 buses covering all possible route in twin cities.

Note: We are ready to add few more routes to our coverage if at least 10 students from new areas are registering for the transport facility.

COLLEGE BUS ROUTE SCHEDULE

Route No	Starting Point	Areas Covered
1	Dilsukhnagar	Dilsukhnagar (foot-over bridge and Opp. To Sai baba temple Arch), Kothapet Fruit Market, AstaLaxmi Temple Kaman, White House, Sagar Ring Road, Omkar Nagar, Hasthinapuram, BN Reddy
3	Chaitanyapuri (Women Special)	Chaitanyapuri, White house, AstaLaxmi Temple Kaman, RR Dist Court, L B Nagar D Mart, Omkar Nagar, Hasthinapuram, BD Reddy Garden, BN Reddy
4	Kothapet (Women Special)	Mohan Nagar Andhra Bank ATM, Kothapet, Bakers Q Kothapet, AstaLaxmi Temple Kaman, BN Reddy
5	Malaysian Township / Shilparamam	Shilparamam, BIO Diversity, Rayadurgam Police Station, Gachibowli Y Junction, Shaikpet (Darga and Naryanamma College), Tolichowki, Tolichowki X Roads, RethiBowli, Attapur Pillar No 143, Upparpalli X Road, Rajendra Nagar Pillar No: 216, Shivrampally Pillar No: 296, Barkas, Shahin Nagar, PahadiShareef, Tukkuguda
7	Hayathnagar	Laxma Reddy Palem, Hayathnagar, Panama, Bhagyalatha Hospital, Hanuman Temple, Shanthi Nagar, Kamala Nagar - Bus Stop, Raithu Bazar, NGO's Colony, Vanasthanlipuram.
8	Block 1	Vidhyanagar, Tilaknagar Rly Gate, Shankar Matt, Nallakunta, Tilak Nagar - Signal, Shivam Road - Bakers Q, 6 No. Signal Amberpet, Sri Ramana - Near Temple, Amberpet - Darga, Ramanthpur (TV Studio & HPS)
9	Himayathnagar	Indira Park, Himayathnagar (Liberty, Stanza & Minerva Hotel), Barkatpura X Road, Tilaknagar Bus Stop, Street No:6, Moosrambagh (More Super Market)
10	VST	Musheerabad, VST Signal, Ramnagar x Roads, RamnagarGundu, VidyanagarSpencers (Adikmet), Amberpet (Police Line), Saroornagar (Lake, Gandhi Statue &Laxmi Vilas Bank), Karmanghat
11	Darushifa	Darushifa, City College, Afzalgunj, Puranapool, Bahadurpura, Zoo Park, Shivarampally, Aramgarh, Katedan Signal, CRPF, Banlaguda, Hashmabad, Chandryangutta Flyover, Rakshapuram, Gayatrinagar
12	Shaadan college	Shaadan College, Lungerhouse, Mehdipatnam Military Gate, NMDC, Masabtank, Lakdikapool, Nampally (Public gardens, Care hospital), Monza Market, ChadharghatNaigara Hotel, Champapet
13	RTC X Road	RTC x Road, Chilkalguda, Kachiguda Tourist Hotel, Kumar Theater, Nimboliadda, SN Reddy Gardens, Green Park Colony, Byramalguda, BD Reddy Garden, BN Reddy
14	Moula – Ali (Andhra Bank)	Moulali, HB colony (E-seva, NTR Statue), Mallapur (Bus Stop), Nacharam (Bus Stop, PS), HMT Nagar, Kamineni Hospital, LB Nagar, Omkar Nagar, Hasthinapuram
15	Bolarum	Bolarum, Alwal, Lothukunta, Tirumalgiri X Roads, Monda Market, Diamond Point, JBS, Patny-YMCA, Secunderabad, Sangeeth Theater, Mettuguda, Uppal X Road, BN Reddy
16	Neredmet X Road	Neredment x Road, Krupa Complex, Vinayak Nagar, East Anandbagh, ZTC, Tarnaka St 'Anns, Uppal Ring Road, Nagole, Kamineni Hospital
18	Hayathnagar	Kamala Nagar, Raithu Bazar, Red Tank, NGO's Colony, Vaidehi Nagar, Yamjal, Ragannaguda
20	Hyder Nagar	Hydernagar Temple, Nizampet, JNTU, Vivekananda Nagar, Kukatpally BJP Office, Balanagar, Shobhana Theatre, Ferozguda, Bowenpally, Gilf Bakery, Paradise.

		25-65
21	Shalibanda	Chatrinaka, Laldarwaza, Shalibanda, Chandryangutta, Babanagar, Rakshapuram, Midhani, Balapur X Road, Badangper, Nadargul.
22	Malakpet	MalakpetYashoda Hospital, Super bazar, TV Tower , Moosarambagh X Roads, GaddiAnnaram, Shiva Ganga Theater, Saroornagar Lake, Sharada Talkies, Karmanghat x Road, Tapovan
23	Borabanda	Motinagar, Rahmathnagar, YusufgudaBasti, Krishna Nagar, Indira Nagar, Sri Nagar Colony, PunjaGutta, Khairatabad, Lakdika Pool, Abids, Koti SBI, Nalgonda X Road, Chanchalguda Jail, Saidabad Signal, Bharat Garden, Byramalguda, Kharmanghat, BN Reddy
24	Sainikpuri X Road Officer's Colony	Sainikpuri X Roads, Officers Colony, AS Rao Nagar, Radhika x Roads, ECIL X Roads, SP Nagar Petrol Pump, Lalapet Bridge, Habsiguda, Omkar Nagar, Hasthinapuram
25	SAHARA	Mansoorabad, Sahara Estates, M E Reddy Funtion Hall, Sushma Theater, RR School Gautam Nagar, Shiva Sindhu, Vanasthalipuram
26	Chintalkunta	Chintalkunta (Check Post & Toyota), Panama, Ganesh Temple, Government Area Hospital, Vanasthalipuram, BN Reddy
27	Golconda X Road	Golconda X Road, Raja deluxe Opp, Musheerabad X Roads , Bhoiguda, Padmarao Nagar, Bhoiguda, Chilkalaguda X Roads, Mylargadda, Seethaphalmandi, Tarnaka, Nagole
29	Jillelguda	Balapur X Road, Jillellaguda Lake, Meerpet Kaman, Almasguda Kaman, Badangpet, Prasanti Hills, RC Road, Gurramguda
31	Dilsukhnagar	DilsukhnagarChandana Bros, Chaitanyapuri, LB Nagar, BN Reddy
32	Narayanaguda	Naryanaguda, YMCA, Kachiguda X Roads, Koti Women's College, Govt. Press, Saidabad Colony, Karmanghat, Bharat Gardens, Yamjal, BN Reddy
33	Uppal Depot	Medipally, Boduppla (MRF Showroom, NTR Statue & Kaman), Peerjadhiguda, Uppal Bus Stop, Uppal Gandhi Statue
34	LB Nagar (Women special)	LB Nagar, Sagar X Road,Omkar Nagar, Hasthinapuram (Central, South), BN Reddy Nagar, Sagar Complex, Injapur, Yamjal
37	Chaitanyapuri (Geetha Hospital)	Chaitanyapuri (Geetha Hospital),Ramalayam 2nd Bus stop, Old Maruthinagar, Jain Mandir, Mohan Nagar, Andhra Bank ATM, RK PuramSaibaba Temple, Alkapuri X Road, BN Reddy, Injapur
38	Safilguda	Safilguda X Road, Anandbagh X Road, MalkajgiriAnutex , Tukaramgate, Mettuguda, TarnakaSudharshan Sweets, Habsiguda X Road, Uppal X Road.
39	I S Sadan	IS Sadan, Yadagiri Theater, Maruthi Nagar Road, Champapet X Road, MandaMallama, Gayatrinagar, TKR Arch, Sagar X Road, Omkar Nagar, Hasthinapurm